Advanced search
Start date
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Splitting up entropy into vibrational and configurational contributions in bulk metallic glasses: A thermodynamic approach

Full text
Alvarez-Donado, Rend [1] ; Antonelli, Alex
Total Authors: 2
[1] Univ Estadual Campinas, UNICAMP, Inst Fis Gleb Wataghin, BR-13083859 Campinas, SP - Brazil
Total Affiliations: 1
Document type: Journal article
Source: PHYSICAL REVIEW RESEARCH; v. 2, n. 1 FEB 25 2020.
Web of Science Citations: 0

We apply an efficient methodology to separate vibrational and configurational entropies in bulk metallic glasses by means of molecular dynamics simulation based on a combination of nonequilibrium adiabatic switching and reversible scaling methods. This approach involves calculating the vibrational free energy using the Einstein crystal as a reference for the solid phase and the recently proposed Uhlenbeck-Ford model for the fluid phase. This methodology has the advantage that it does not require a crystalline solid phase for separating the entropies. Therefore, in principle, it is applicable to any material, regardless of whether or not it has a crystalline phase. Using this methodology, we separate the vibrational and configurational entropies of two metallic glasses with different fragilities at zero external pressure, namely, Cu50Zr50 and Cu46Zr46Al8. We find that the results for the former alloy are in quite reasonable agreement with recent experimental work by Smith et al. {[}Nat. Phys. 13, 900 (2017)]. We also find the configurational entropy of the glass containing Al to be 70% larger than that of the other glass. Our results suggest that although other factors may be at play, the configurational entropy can be used to investigate the effect of the addition of a minor-alloying element on the glass-forming ability of bulk metallic glasses. (AU)

FAPESP's process: 13/08293-7 - CCES - Center for Computational Engineering and Sciences
Grantee:Munir Salomao Skaf
Support Opportunities: Research Grants - Research, Innovation and Dissemination Centers - RIDC
FAPESP's process: 16/23891-6 - Computer modeling of condensed matter
Grantee:Alex Antonelli
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 10/16970-0 - Computational modeling of condensed matter: a multiscale approach
Grantee:Alex Antonelli
Support Opportunities: Research Projects - Thematic Grants