Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Applications of computational fluid dynamics in irrigation engineering

Full text
Author(s):
de Camargo, Antonio Pires [1] ; Muniz, Gustavo Lopes [1] ; Cano, Nicolas Duarte [1] ; Ait-Mouheb, Nassim [2] ; Tomas, Severine [2] ; de Sousa Pereira, Diego Jose [3] ; Lavanholi, Rogerio [3] ; Frizzone, Jose Antonio [3] ; Molle, Bruno [2]
Total Authors: 9
Affiliation:
[1] Univ Estadual Campinas, UNICAMP, Fac Engn Agr, Campinas, SP - Brazil
[2] Univ Montpellier, Dept Waters, French Natl Inst Agr Food & Environm, Joint Res Unit Water Management Actors Terr, F-34196 Montpellier - France
[3] Univ Sao Paulo, Escola Super Agr Luiz de Queiroz ESALQ, Piracicaba, SP - Brazil
Total Affiliations: 3
Document type: Journal article
Source: REVISTA CIENCIA AGRONOMICA; v. 51, n. SI 2020.
Web of Science Citations: 0
Abstract

Computational fluid dynamics (CFD) techniques have become an important tool for investigating and predicting flow behavior in many industrial and engineering processes. In the last two decades, CFD has been used for the study, design, and improvement of irrigation equipment. Numerical simulations can be used to predict fluid flow, heat transfer, and chemical reactions within complex systems. The objective of this review is to provide an overview of the uses of CFD in irrigation engineering applications. The paper is organized into two main sections: fundamentals of CFD and irrigation engineering applications. The first section presents the main methods used in numerical simulations, basic equations to predict fluid flow parameters, meshing concerns, and convergence criteria. In the second section, we present applications related to friction and local head losses in pipes, liquid and solid-liquid flow simulation in drippers, chemical scaling, filters, sprinklers, direct-acting pressure-regulating valves, and Venturi injectors. The briefly described applications indicated that CFD modeling can be an accurate, quick, and feasible method for the investigation of flow parameters in irrigation pipes, fittings, emitters, and accessories. The CFD simulations can be useful for designing new products as well as for improving and optimizing existing products. Computational fluid dynamics uses in irrigation engineering must be encouraged, particularly for innovation purposes resulting from the cooperation between academia and irrigation companies. (AU)

FAPESP's process: 18/20099-5 - Clogging processes of irrigation drippers due to interactions of calcium carbonate and solid particles
Grantee:Antonio Pires de Camargo
Support Opportunities: Regular Research Grants