Modeling, analysis and simulation of dynamic process on complex networks
III Workshop and School on Dynamics, Transport and Control in Complex Networks (Co...
Full text | |
Author(s): |
Total Authors: 4
|
Affiliation: | [1] Natl Inst Space Res, BR-12227010 Sao Jose Dos Campos - Brazil
[2] Univ Fed Sao Paulo, Inst Sci & Technol, BR-12247010 Sao Jose Dos Campos - Brazil
[3] Humboldt Univ, Dept Phys, Newtonstr 15, D-12489 Berlin - Germany
[4] Leibniz Assoc, Potsdam Inst Climate Impact Res PIK, POB 60 12 03, D-14412 Potsdam - Germany
Total Affiliations: 4
|
Document type: | Journal article |
Source: | Chaos; v. 31, n. 11 NOV 2021. |
Web of Science Citations: | 0 |
Abstract | |
We analyze how the structure of complex networks of non-identical oscillators influences synchronization in the context of the Kuramoto model. The complex network metrics assortativity and clustering coefficient are used in order to generate network topologies of Erdos-Renyi, Watts-Strogatz, and Barabasi-Albert types that present high, intermediate, and low values of these metrics. We also employ the total dissonance metric for neighborhood similarity, which generalizes to networks the standard concept of dissonance between two non-identical coupled oscillators. Based on this quantifier and using an optimization algorithm, we generate Similar, Dissimilar, and Neutral natural frequency patterns, which correspond to small, large, and intermediate values of total dissonance, respectively. The emergency of synchronization is numerically studied by considering these three types of dissonance patterns along with the network topologies generated by high, intermediate, and low values of the metrics assortativity and clustering coefficient. We find that, in general, low values of these metrics appear to favor phase locking, especially for the Similar dissonance pattern. (AU) | |
FAPESP's process: | 18/03211-6 - Non linear dynamics |
Grantee: | Iberê Luiz Caldas |
Support Opportunities: | Research Projects - Thematic Grants |