Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Development of a sticker sealed microfluidic device for in situ analytical measurements using synchrotron radiation

Full text
Author(s):
Show less -
Neckel, Itamar T. [1] ; de Castro, Lucas F. [2] ; Callefo, Flavia [1] ; Teixeira, Veronica C. [1] ; Gobbi, Angelo L. [3] ; Piazzetta, Maria H. [3] ; de Oliveira, Ricardo A. G. [3] ; Lima, Renato S. [3] ; Vicente, Rafael A. [4] ; Galante, Douglas [1] ; Tolentino, Helio C. N. [1]
Total Authors: 11
Affiliation:
[1] Brazilian Ctr Res Energy & Mat CNPEM, Brazilian Synchrotron Light Lab LNLS, BR-13083970 Campinas - Brazil
[2] Univ Fed Goias, Inst Chem, Campus Samambaia, BR-74690900 Goiania, Go - Brazil
[3] Brazilian Ctr Res Energy & Mat CNPEM, Brazilian Nanotechnol Natl Lab LNNano, BR-13083970 Campinas - Brazil
[4] Univ Estadual Campinas, Inst Chem, BR-13083970 Campinas, SP - Brazil
Total Affiliations: 4
Document type: Journal article
Source: SCIENTIFIC REPORTS; v. 11, n. 1 DEC 8 2021.
Web of Science Citations: 0
Abstract

Shedding synchrotron light on microfluidic systems, exploring several contrasts in situ/operando at the nanoscale, like X-ray fluorescence, diffraction, luminescence, and absorption, has the potential to reveal new properties and functionalities of materials across diverse areas, such as green energy, photonics, and nanomedicine. In this work, we present the micro-fabrication and characterization of a multifunctional polyester/glass sealed microfluidic device well-suited to combine with analytical X-ray techniques. The device consists of smooth microchannels patterned on glass, where three gold electrodes are deposited into the channels to serve in situ electrochemistry analysis or standard electrical measurements. It has been efficiently sealed through an ultraviolet-sensitive sticker-like layer based on a polyester film, and The burst pressure determined by pumping water through the microchannel(up to 0.22 MPa). Overall, the device has demonstrated exquisite chemical resistance to organic solvents, and its efficiency in the presence of biological samples (proteins) is remarkable. The device potentialities, and its high transparency to X-rays, have been demonstrated by taking advantage of the X-ray nanoprobe Carnauba/Sirius/LNLS, by obtaining 2D X-ray nanofluorescence maps on the microchannel filled with water and after an electrochemical nucleation reaction. To wrap up, the microfluidic device characterized here has the potential to be employed in standard laboratory experiments as well as in in situ and in vivo analytical experiments using a wide electromagnetic window, from infrared to X-rays, which could serve experiments in many branches of science. (AU)

FAPESP's process: 20/02537-5 - Exploring Nanopaleontology: new parameters of biogenicity and the study of biosignatures with synchrotron light
Grantee:Flávia Callefo
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 19/13888-6 - Fundamental studies of the electrode-solution interface in relevant systems in (electro)catalysis
Grantee:Rafael Alcides Vicente
Support Opportunities: Scholarships in Brazil - Master
FAPESP's process: 21/05083-8 - Nanoscale multitechnical synchrotron characterization applied to the problem of biogenicity of minerals
Grantee:Douglas Galante
Support Opportunities: Regular Research Grants