Classical theorems in nonassociative finite dimensional superalgebras
On finite basis property for varieties of nearly associative algebras.
Full text | |
Author(s): |
Total Authors: 4
|
Affiliation: | [1] Univ Montpellier, CNRS, Inst Montpellierain Alexander Grothendieck, Pl Eugene Bataillon, F-34095 Montpellier - France
[2] Univ Republica, Inst Matemat & Estadist Rafael Laguardia, Fac Ingn, Julio Herrera y Reissig 565, Montevideo 11300 - Uruguay
[3] Univ Sao Paulo, Inst Matemat & Estat, Dept Matemat, Rua Matao 1010, BR-05508090 Sao Paulo - Brazil
[4] Univ Buenos Aires, CONICET, IMAS, Fac Ciencias Exactas & Nat, Ciudad Univ, Pabellon 1, RA-1428 Buenos Aires, DF - Argentina
[5] Univ Buenos Aires, Dept Matemat, Ciudad Univ, Pabellon 1, RA-1428 Buenos Aires, DF - Argentina
Total Affiliations: 5
|
Document type: | Journal article |
Source: | BULLETIN OF THE LONDON MATHEMATICAL SOCIETY; v. 53, n. 6, p. 1636-1650, DEC 2021. |
Web of Science Citations: | 1 |
Abstract | |
For an extension of associative algebras B subset of A over a field and an A-bimodule X, we obtain a Jacobi-Zariski long nearly exact sequence relating the Hochschild homologies of A and B, and the relative Hochschild homology, all of them with coefficients in X. This long sequence is exact twice in three. There is a spectral sequence which converges to the gap of exactness. (AU) | |
FAPESP's process: | 14/09310-5 - Algebraic structures and their representations |
Grantee: | Vyacheslav Futorny |
Support Opportunities: | Research Projects - Thematic Grants |