Advanced search
Start date
Betweenand


Advanced Digital Signal Processing and Variable-Rate Coding for Unrepeatered Optical Transmission

Full text
Author(s):
Helio, Jose C. Junior, Jr. ; Sutili, Tiago ; Figueiredo, Rafael C. ; Mello, Darli A. A.
Total Authors: 4
Document type: Journal article
Source: IEEE Photonics Journal; v. 14, n. 4, p. 7-pg., 2022-08-01.
Abstract

In this paper, we evaluate the selective combination of algorithms for fiber nonlinearity compensation, transceiver impairments mitigation and variable-rate coding in unrepeatered optical transmission. A post-emphasis filter and a two-stage 4x4 multiple-input and multiple-output equalizer compensate the impact of bandwidth limitations and in-phase and quadrature skew. Nonlinear compensation is accomplished by a fast-converging adaptive digital back-propagation algorithm and maximum likelihood sequence estimation. Forward error correction is provided by a variable-rate spatially-coupled low-density parity-check code. The performance and complexity of the proposed digital subsystems are experimentally evaluated by the unrepeatered wavelength division multiplexing transmission of 17x200-Gb/s (DP-16QAM 32-GBd) channels over 350-km of large effective area and low-loss single-mode fibers. The experimental results for different combinations of algorithms elucidate the trade-off of complexity and performance in unrepeatered optical transmission. (AU)

FAPESP's process: 15/24517-8 - Photonics for next generation internet
Grantee:Hugo Enrique Hernández Figueroa
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 15/24341-7 - New strategies to confront with the threat of capacity exhaustion
Grantee:Helio Waldman
Support Opportunities: Research Projects - Thematic Grants