Advanced search
Start date
Betweenand


The role of single-atom Rh-dopants in the adsorption properties of OH and CO on stepped Ag(211) surfaces

Full text
Author(s):
Neto, Marionir M. C. B. ; Verga, Lucas G. ; Da Silva, Juarez L. F. ; Galvao, Breno R. L.
Total Authors: 4
Document type: Journal article
Source: Physical Chemistry Chemical Physics; v. 25, n. 6, p. 11-pg., 2023-01-10.
Abstract

Several chemical reactions with commercial and environmental importance can benefit from the development of more active or selective heterogeneous catalysts. Particularly, those catalyzed by metallic surfaces are usually impacted by the presence of defects such as kinks and dopants. Here, we employed density functional theory calculations within van der Waals correction to investigate the effects of single-atom Rh-dopants in the adsorption properties of OH and CO on stepped Ag(211) surfaces. From our calculations and analyses, we found that the dopant is more energetically stable when replacing more coordinated (and less exposed to the vacuum) sites of the surface. However, in the presence of both molecules, this trend is inverted, and the dopant is more stable in the least coordinated site (step). While OH presents high adsorption energies on both doped and non-doped silver surfaces, CO binds weakly to the noble metal, and strongly on doped sites. The results are relevant for understanding single-atom catalysts on noble-metal surfaces, where the difference in selectivity and activity between the host metal and dopants is exploited. The charge redistribution caused by the dopant, and the appearance of a sharp peak in the density of states of the surface are used to rationalize the results and provide insights into the interactions involved in the adsorption of both molecules. (AU)

FAPESP's process: 19/05561-7 - A Multiscale Framework Applied to the Investigation of CO2 Reduction on Metallic Nanoparticles: The Role of Size and Adsorbate Coverage Effects
Grantee:Lucas Garcia Verga
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 18/21401-7 - Multi-User Equipment approved in grant 2017/11631-2: cluster computational de alto desempenho - ENIAC
Grantee:Juarez Lopes Ferreira da Silva
Support Opportunities: Multi-user Equipment Program
FAPESP's process: 17/11631-2 - CINE: computational materials design based on atomistic simulations, meso-scale, multi-physics, and artificial intelligence for energy applications
Grantee:Juarez Lopes Ferreira da Silva
Support Opportunities: Research Grants - Research Centers in Engineering Program
FAPESP's process: 21/07129-5 - CO2 reduction on Cu-Au intermetallic surfaces: atomic ordering and adsorbate coverage effects
Grantee:Lucas Garcia Verga
Support Opportunities: Scholarships abroad - Research Internship - Post-doctor