Algebraic graph theory methods in quantum information theory and extremal combinat...
Investigation of polynomial differential systems: classification, bifurcations and...
On the quiver descriptions of Hilbert and Quot schemes and beyond
Full text | |
Author(s): |
Vidal, S. J.
;
Cadavid, P.
;
Rodriguez, P. M.
Total Authors: 3
|
Document type: | Journal article |
Source: | SIBERIAN MATHEMATICAL JOURNAL; v. 63, n. 5, p. 17-pg., 2022-09-01. |
Abstract | |
Evolution algebras are a special class of nonassociative algebras exhibiting connections with various fields of mathematics. Hilbert evolution algebras generalize the concept in the framework of Hilbert spaces. This allows us to deal with a wide class of infinite-dimensional spaces. We study Hilbert evolution algebras associated to a graph. Inspired by the definitions of evolution algebras we define the Hilbert evolution algebra that is associated to a given graph and the Hilbert evolution algebra that is associated to the symmetric random walk on a graph. For a given graph, we provide the conditions for these structures to be or not to be isomorphic. Our definitions and results extend to the graphs with infinitely many vertices. We also develop a similar theory for the evolution algebras associated to finite graphs. (AU) | |
FAPESP's process: | 17/10555-0 - Stochastic modeling of interacting systems |
Grantee: | Fabio Prates Machado |
Support Opportunities: | Research Projects - Thematic Grants |