Advanced search
Start date
Betweenand


Neurological Complications of the COVID-19 Pandemic: What Have We Got So Far?

Full text
Author(s):
Bandeira, Isabelle Pastor ; Machado Schlindwein, Marco Antonio ; Breis, Leticia Caroline ; Schatzmann Peron, Jean Pierre ; Magno Goncalves, Marcus Vinicius ; Guest, PC
Total Authors: 6
Document type: Journal article
Source: CLINICAL, BIOLOGICAL AND MOLECULAR ASPECTS OF COVID-19; v. 1321, p. 11-pg., 2021-01-01.
Abstract

The recently emerged coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of COVID-19, is the newest threat to human health. It has already infected more than 54.5 million people worldwide, currently leading to more than 1.3 million deaths. Although it causes a mild flu-like disease in most patients, lethality may increase to more than 20% in elderly subjects, especially in those with comorbidities, like hypertension, diabetes, or lung and cardiac disease, and the mechanisms are still elusive. Common symptoms at the onset of illness are fever, cough, myalgia or fatigue, headache, and diarrhea or constipation. Interestingly, respiratory viruses have also placed themselves as relevant agents for central nervous system (CNS) pathologies. Conversely, SARS-CoV-2 has already been detected in the cerebrospinal fluid. Here, we discuss several clinical features related to CNS infection during COVID-19. Patients may progress from headaches and migraines to encephalitis, stroke, and seizures with leptomeningitis. However, the pathway used by the virus to reach the brain is still unknown. It may infect the olfactory bulb by retrograde neuronal transportation from olfactory epithelium, or it could be transported by the blood. Either way, neurological complications of COVID-19 add greatly to the complex pathophysiology of the disease. Neurological signs and symptoms must alert physicians not only to worst outcomes but also to future possible degenerative diseases. (AU)

FAPESP's process: 17/22504-1 - TAM receptors and their ligands Gas6 and Pros1 on the ZIKV Congenital Syndrome in Experimental Models
Grantee:Jean Pierre Schatzmann Peron
Support Opportunities: Regular Research Grants
FAPESP's process: 17/26170-0 - Neuroimmunology in experimental models of Autoimmune Encephalomyelitis and Congenital Zika Syndrome: physiopathogenesis, susceptibility, cellular therapy, vaccination
Grantee:Carolina Demarchi Munhoz
Support Opportunities: Research Projects - Thematic Grants