Advanced search
Start date
Betweenand


Microbial oil and biodiesel production in an integrated sugarcane biorefinery: Techno-economic and life cycle assessment

Full text
Author(s):
Longati, Andreza Aparecida ; Campani, Gilson ; Furlan, Felipe Fernando ; Giordano, Roberto de Campos ; Miranda, Everson Alves
Total Authors: 5
Document type: Journal article
Source: JOURNAL OF CLEANER PRODUCTION; v. 379, p. 11-pg., 2022-10-27.
Abstract

Biodiesel and bioethanol play an important role as renewable liquid fuels. Bagasse, a by-product from the bioethanol industry, can generate a "sugarcane bagasse hemicellulose hydrolysate" (SCBH) that contains fermentable sugars, mainly xylose. Oleaginous yeasts (eg., Rhodotorula toruloides) can grow in SCBH, producing microbial oil (MO), a source of triacylglycerol for biodiesel production. The integration of bioethanol and biodiesel (from MO) production may be a promising approach in order to exploit synergies between bioethanol and biodiesel processes within a biorefinery. This integration may improve the economic and environmental performance of both processes. This work presents the techno-economic-environmental analysis of the integrated production of first-generation bioethanol, bioelectricity, and biodiesel in a Brazilian sugarcane biorefinery, where MO from the yeast R. toruloides feeds the biodiesel unit. The biorefinery, processing 4.0 million t of sugarcane per harvest, produces 71.7 m3/h of bioethanol, 2.55 m3/h of biodiesel (that can replace 75.6% of the diesel demand in the field), and 86.3 MW of surplus bioelectricity. A life cycle assessment shows that the integrated biorefinery had a lower environmental impact than the first-generation bioethanol plant. The integrated process exhibits a positive economic performance (net present value of approx. 110 million of dollars and internal rate of return of about 14.5% per year, higher than the minimum acceptable rate of return, assumed as 11% per year), indicating that this is a feasible industrial option. Sensitivity analysis shows that R&D should mainly focus on the MO bioreactor operation. (AU)

FAPESP's process: 18/09692-6 - Reverse technical-economical analysis of the production of carotenoids and microbial oil by the Rhodotorula toruloides oleaginous yeast from the hemicellulosic fraction of sugarcane bagasse integrated into the bioreminaria biodiesel-bioethanol (1G-2G)
Grantee:Gilson Campani Junior
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 16/10636-8 - From the cell factory to the Biodiesel-Bioethanol integrated biorefinery: a systems approach applied to complex problems in micro and macroscales
Grantee:Roberto de Campos Giordano
Support Opportunities: Program for Research on Bioenergy (BIOEN) - Thematic Grants
FAPESP's process: 19/15851-2 - Reverse techno-economic-environmental analysis carotenoids production microbial oil by the Rhodotorula toruloides oleaginous yeast from the hemicellulose fraction of sugarcane bagasse integrated into the biorefinery ethanol-biodiesel
Grantee:Andreza Aparecida Longati de Oliveira
Support Opportunities: Scholarships in Brazil - Post-Doctoral