Advanced search
Start date
Betweenand


Municipal Park Grounds and Microplastics Contamination

Full text
Author(s):
Sarti Fernandes, Emilia Mori ; de Souza, Alana Gabrieli ; da Silva Barbosa, Rennan Felix ; Rosa, Derval dos Santos
Total Authors: 4
Document type: Journal article
Source: JOURNAL OF POLYMERS AND THE ENVIRONMENT; v. 30, n. 12, p. 9-pg., 2022-09-22.
Abstract

The presence of microplastics (MPs) in different terrestrial ecosystems has adverse effects on planet biota and even on humans in the long term. However, few studies evaluate areas with a high circulation of people, such as parks. This work aimed to carry out a comparative study between the municipal landfill and one park in Santo Andre (SP), Brazil, seeking to prove their presence and establish the types of plastics found in these environments, exploring the correlation between them. For that, different sites at the park were selected, and soil was collected from the surface and 20 cm depth. The samples were characterized by optical microscopy and Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and MPs abundancy and the results were compared with landfill soil as standard. Results indicated the presence of microplastics in the park soil in different morphologies, such as fragments and fibers, and degradation characteristics. The FTIR indicated the presence of polypropylene, polyethylene terephthalate, and polyethylene, with an abundance of 1401 items kg(-1) for the park and 2393 items kg(-1) in the landfill, indicating that parks have high amounts of MPs in the soil, like landfills, being a source of contaminants with risk of toxicity. This work established a correlation between regions with a higher flow of people and, consequently, more significant maintenance and cleaning, with a lower frequency of microplastics, and regions with a lower flow of people, such as places with more vegetation, where the incorrect disposal of solid waste results in a higher frequency of microplastics with characteristics of degradation by weathering. (AU)

FAPESP's process: 20/13703-3 - Environmentally friendly porous materials for the recovery and revaluation of metals reclaimed from contaminated water
Grantee:Derval dos Santos Rosa
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 21/08296-2 - Development of chitosan hydrogels containing modified cellulose nanostructures for metal removal and recovery from contaminated water
Grantee:Rennan Felix da Silva Barbosa
Support Opportunities: Scholarships in Brazil - Doctorate