Advanced search
Start date
Betweenand


Semi-Automatic Ulcer Segmentation and Wound Area Measurement Supporting Telemedicine

Full text
Author(s):
Show less -
Cazzolato, Mirela T. ; Ramos, Jonathan S. ; Rodrigues, Lucas S. ; Scabora, Lucas C. ; Chino, Daniel Y. T. ; Jorge, Ana E. S. ; de Azevedo-Marques, Paulo Mazzoncini ; Traina Jr, Caetano ; Traina, Agma J. M. ; DeHerrera, AGS ; Gonzalez, AR ; Santosh, KC ; Temesgen, Z ; Kane, B ; Soda, P
Total Authors: 15
Document type: Journal article
Source: 2020 IEEE 33RD INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS(CBMS 2020); v. N/A, p. 6-pg., 2020-01-01.
Abstract

Many patients suffer from chronic skin lesions, commonly known as ulcers. The size evolution of chronic wounds provides meaningful clues regarding the patient's clinical state for healthcare professionals and caretakers. Many studies have been proposed in recent years to support the treatment of skin ulcers. However, there is a lack of practical solutions, as existing studies are not targeted at immediate use in daily medical practice. In this work, we propose URule, an essentially practical framework for segmentation and measurement of skin ulcers. URule-App, a mobile instance of the framework, analyzes images taken by a common camera from a mobile device. The segmentation requires the user to manually outline the outsider region of both the wound and the measurement tool. URule-Seg segments the image and estimates the wound area. The user can further improve the estimated area by manually informing the span of a centimeter in the image. The experimental evaluation reveals that URule can accurately segment ulcer wounds semi-automatically, with an average F-Measure of 0.8 for segmentation, and processing measurement tools better than the manual process in three out of five tested rulers. (AU)

FAPESP's process: 16/17078-0 - Mining, indexing and visualizing Big Data in clinical decision support systems (MIVisBD)
Grantee:Agma Juci Machado Traina
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 20/07200-9 - Analyzing complex data from COVID-19 to support decision making and prognosis
Grantee:Agma Juci Machado Traina
Support Opportunities: Regular Research Grants
FAPESP's process: 17/23780-2 - Content-based retrieval of medical images to aid the clinical decision using radiomics
Grantee:Jonathan da Silva Ramos
Support Opportunities: Scholarships in Brazil - Doctorate
FAPESP's process: 18/24414-2 - A framework for integration of feature extraction techniques and complex databases for MIVisBD
Grantee:Mirela Teixeira Cazzolato
Support Opportunities: Scholarships in Brazil - Technical Training Program - Technical Training
FAPESP's process: 16/17330-1 - Storage and Navigation Operations on Graphs in Relational DBMS
Grantee:Lucas de Carvalho Scabora
Support Opportunities: Scholarships in Brazil - Doctorate