Advanced search
Start date
Betweenand


Alternative Controlling Agent of Theobroma grandiflorum Pests: Nanoscale Surface and Fractal Analysis of Gelatin/PCL Loaded Particles Containing Lippia origanoides Essential Oil

Full text
Author(s):
Show less -
Rocha, Ana Luisa Farias ; de Aguiar Nunes, Ronald Zico ; Matos, Robert Saraiva ; da Fonseca Filho, Henrique Duarte ; de Araujo Bezerra, Jaqueline ; Lima, Alessandra Ramos ; Guimaraes, Francisco Eduardo Gontijo ; Pamplona, Ana Maria Santa Rosa ; Majolo, Claudia ; de Souza, Maria Geralda ; Campelo, Pedro Henrique ; Talu, Stefan ; Bagnato, Vanderlei Salvador ; Inada, Natalia Mayumi ; Sanches, Edgar Aparecido
Total Authors: 15
Document type: Journal article
Source: NANOMATERIALS; v. 12, n. 15, p. 22-pg., 2022-08-01.
Abstract

A new systematic structural study was performed using the Atomic Force Microscopy (AFM) reporting statistical parameters of polymeric particles based on gelatin and poly-epsilon-caprolactone (PCL) containing essential oil from Lippia origanoides. The developed biocides are efficient alternative controlling agents of Conotrachelus humeropictus and Moniliophtora perniciosa, the main pests of Theobroma grandiflorum. Our results showed that the particles morphology can be successfully controlled by advanced stereometric parameters, pointing to an appropriate concentration of encapsulated essential oil according to the particle surface characteristics. For this reason, the absolute concentration of 1000 mu g center dot mL(-1) (P-1000 system) was encapsulated, resulting in the most suitable surface microtexture, allowing a faster and more efficient essential oil release. Loaded particles presented zeta potential around (-54.3 +/- 2.3) mV at pH = 8, and particle size distribution ranging from 113 to 442 nm. The hydrodynamic diameter of 90% of the particle population was found to be up to (405 +/- 31) nm in the P-1000 system. The essential oil release was evaluated up to 80 h, with maximum release concentrations of 63% and 95% for P-500 and P-1000, respectively. The best fit for the release profiles was obtained using the Korsmeyer-Peppas mathematical model. Loaded particles resulted in 100% mortality of C. humeropictus up to 48 h. The antifungal tests against M. perniciosa resulted in a minimum inhibitory concentration of 250 mu g center dot mL(-1), and the P-1000 system produced growth inhibition up to 7 days. The developed system has potential as alternative controlling agent, due to its physical stability, particle surface microtexture, as well as pronounced bioactivity of the encapsulated essential oil. (AU)

FAPESP's process: 09/54035-4 - Facility for advanced studies of biosystems and nanostructured materials
Grantee:Igor Polikarpov
Support Opportunities: Multi-user Equipment Program
FAPESP's process: 13/07276-1 - CEPOF - Optics and Photonic Research Center
Grantee:Vanderlei Salvador Bagnato
Support Opportunities: Research Grants - Research, Innovation and Dissemination Centers - RIDC