Advanced search
Start date
Betweenand


Self-Disinfecting Urethral Catheter to Overcome Urinary Infections: From Antimicrobial Photodynamic Action to Antibacterial Biochemical Entities

Full text
Author(s):
Dias, Lucas D. ; Duarte, Luana S. ; Naves, Plinio L. F. ; Napolitano, Hamilton B. ; Bagnato, Vanderlei S.
Total Authors: 5
Document type: Journal article
Source: MICROORGANISMS; v. 10, n. 12, p. 15-pg., 2022-12-01.
Abstract

Medical-device-related infections are considered a worldwide public health problem. In particular, urinary catheters are responsible for 75% of cases of hospital urinary infections (a mortality rate of 2.3%) and present a high cost for public and private health systems. Some actions have been performed and described aiming to avoid it, including clinical guidelines for catheterization procedure, antibiotic prophylaxis, and use of antimicrobial coated-urinary catheters. In this review paper, we present and discuss the functionalization of urinary catheters surfaces with antimicrobial entities (e.g., photosensitizers, antibiotics, polymers, silver salts, oxides, bacteriophage, and enzymes) highlighting the immobilization of photosensitizing molecules for antimicrobial photodynamic applications. Moreover, the characterization techniques and (photo)antimicrobial effects of the coated-urinary catheters are described and discussed. We highlight the most significant examples in the last decade (2011-2021) concerning the antimicrobial coated-urinary catheter and their potential use, limitations, and future perspectives. (AU)

FAPESP's process: 14/50857-8 - National Institute in Basic Optics and Applied to Life Sciences
Grantee:Vanderlei Salvador Bagnato
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 13/07276-1 - CEPOF - Optics and Photonic Research Center
Grantee:Vanderlei Salvador Bagnato
Support Opportunities: Research Grants - Research, Innovation and Dissemination Centers - RIDC