Advanced search
Start date
Betweenand


Bionanomining of copper-based nanoparticles using pre-processed mine tailings as the precursor

Full text
Author(s):
Branda, Igor Yannick das Neves Vasconcellos ; de Macedo, Erenilda Ferreira ; Silva, Pedro Henrique Barboza de Souza ; Batista, Aline Fontana ; Petroni, Sergio Luis Graciano ; Goncalves, Maraisa ; Conceicao, Katia ; Triche, Eliandra de Sousa ; Tada, Dayane Batista ; Maass, Danielle
Total Authors: 10
Document type: Journal article
Source: Journal of Environmental Management; v. 338, p. 9-pg., 2023-07-15.
Abstract

The bacterial synthesis of copper nanoparticles emerges as an eco-friendly alternative to conventional techniques since it comprises a single-step and bottom-up approach, which leads to stable metal nanoparticles. In this paper, we studied the biosynthesis of Cu-based nanoparticles by Rhodococcus erythropolis ATCC4277 using a pre-processed mining tailing as a precursor. The influence of pulp density and stirring rate on particle size was evaluated using a factor-at-time experimental design. The experiments were carried out in a stirred tank bioreactor for 24 h at 25 degrees C, wherein 5% (v/v) of bacterial inoculum was employed. The O2 flow rate was maintained at 1.0 L min-1 and the pH at 7.0. Copper nanoparticles (CuNPs), with an average hydrodynamic diameter of 21 & PLUSMN; 1 nm, were synthesized using 25 g.L-1 of mining tailing and a stirring rate of 250 rpm. Aiming to visualize some possible biomedical applications of the as-synthesized CuNPs, their antibacterial activity was evaluated against Escherichia coli and their cytotoxicity was evaluated against Murine Embryonic Fibroblast (MEF) cells. The 7-day extract of CuNPs at 0.1 mg mL-1 resulted in 75% of MEF cell viability. In the direct method, the suspension of CuNPs at 0.1 mg mL-1 resulted in 70% of MEF cell viability. Moreover, the CuNPs at 0.1 mg mL-1 inhibited 60% of E. coli growth. Furthermore, the NPs were evaluated regarding their photo-catalytic activity by monitoring the oxidation of methylene blue (MB) dye. The CuNPs synthesized showed rapid oxidation of MB dye, with the degradation of approximately 65% of dye content in 4 h. These results show that the biosynthesis of CuNPs by R. erythropolis using pre-processed mine tailing can be a suitable method to obtain CuNPs from environmental and economical perspectives, resulting in NPs useful for biomedical and photo-catalytic applications. (AU)

FAPESP's process: 19/07659-4 - Valorization of metals present in metal-rich wastes by biomining process - BIOMETALVALUE
Grantee:Danielle Maass
Support Opportunities: Regular Research Grants