Advanced search
Start date
Betweenand


Space Diversity Mitigation Effects on Ionospheric Amplitude Scintillation With Basis on the Analysis of GNSS Experimental Data

Full text
Author(s):
Costa, Emanoel ; de O. Moraes, Alison ; Rodrigues de Paula, Eurico ; Monico, Joao Francisco Galera
Total Authors: 4
Document type: Journal article
Source: IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION; v. 71, n. 7, p. 9-pg., 2023-07-01.
Abstract

Ionospheric density irregularities embedded in Equatorial Plasma Bubbles (EPBs), with scale sizes varying from several hundred kilometers to several tens of meters, may cause amplitude and phase scintillation of transionospheric radio waves, degrading the performance and availability of spacebased communication and navigation systems. A recent computer simulation study, based on ionospheric irregularities detected by the Planar Langmuir Probe (PLP) onboard the Communication/Navigation Outage Forecasting System (C/NOFS) satellite, analyzed the mitigation effects from space diversity on amplitude scintillation of transionospheric signals received on the ground. The present work, based on experimental data, will confirm and extend the previous results, indicating, in statistically quantitative terms, how space diversity, effective on uplink and downlink ground-satellite paths, particularly in the strong and saturated scintillation regimes, depends on Ionospheric Pierce Point (IPP) dip-latitude and distance intervals, as well as on a well-known amplitude scintillation index. (AU)

FAPESP's process: 17/50115-0 - GNSS technology for supporting air navigation
Grantee:Joao Francisco Galera Monico
Support Opportunities: Research Grants - Research in Public Policies