Advanced search
Start date
Betweenand


Next-generation food packaging: Edible bioactive films with alginate, mangaba pulp (Hancornia speciosa), and Saccharomyces boulardii

Full text
Author(s):
de Oliveira Filho, Josemar Gonsalves ; de Sousa, Tainara Leal ; Bertolo, Mirella Romanelli Vicente ; Junior, Stanislau Bogusz ; Mattoso, Luiz Henrique Capparelli ; Pimentel, Tatiana Colombo ; Egea, Mariana Buranelo
Total Authors: 7
Document type: Journal article
Source: FOOD BIOSCIENCE; v. 54, p. 10-pg., 2023-08-01.
Abstract

In recent years, there has been increasing interest in edible films made from biopolymers for food packaging due to their biodegradable, non-toxic, and biocompatible properties. In addition to presenting barrier properties, these films can also carry bioactive compounds such as probiotics, prebiotics, and fruit pulps, which benefit consumers' health. In this context, this research aimed to develop bioactive edible films based on alginate with the addition of mangaba pulp (Hancornia speciosa) and the probiotic yeast Saccharomyces boulardii for application as food packaging material. The films were prepared based on alginate (1.5%), glycerol (0.6 g/g of biopolymer), mangaba pulp (0%-40%), and S. boulardii (9 log CFU/g). The relationship in their properties related to water, physical-mechanical, optical, and thermal was evaluated. Furthermore, the concentration of bioactive compounds, antioxidant activity, and probiotic viability (during storage at 4 and 25 degrees C) were determined. The addition of S. boulardii reduced the tensile strength, increased the C* and opacity values of the films, and improved barrier properties to ultraviolet and visible light. Adding mangaba pulp improved the films' waterrelated, tensile, and thermal properties, as the films showed lower water solubility and water vapor permeability and higher thermal stability, tensile strength, and elongation at break. Increasing the concentration of mangaba pulp in the filmogenic solution made the films darker, with yellow tones and more saturated. Furthermore, it incorporated bioactive compounds (carotenoids, vitamin C, and phenolic compounds), increased the antioxidant capacity of the films and improved barrier properties to ultraviolet and visible light. Probiotic cultures could survive at suitable counts (>6 log CFU/g) during film formation and storage (4 degrees C/45 days or 25 degrees C/21 days). Thus, these films represent new bioactive carriers with potential applications as food packaging materials. (AU)

FAPESP's process: 21/13260-7 - Smart nanofibers functionalized with natural pigments: a new approach to food quality monitoring
Grantee:Josemar Gonçalves de Oliveira Filho
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 18/22214-6 - Towards a convergence of technologies: from sensing and biosensing to information visualization and machine learning for data analysis in clinical diagnosis
Grantee:Osvaldo Novais de Oliveira Junior
Support Opportunities: Research Projects - Thematic Grants