Advanced search
Start date
Betweenand


Tribological Behavior of SINTER30 Steel Subjected to Duplex Treatment

Full text
Author(s):
Show less -
de Macedo, Francisco Rafael Campos ; de Sousa, Romulo Ribeiro Magalhaes ; Nogueira Jr, Jose Wellinton ; Luz-Lima, Cleanio ; Liborio, Maxwell Santana ; Lobo, Anderson de Oliveira ; Trava-Airoldi, Vladimir Jesus ; Marciano, Fernanda Roberto ; Feitor, Michelle Cequeira ; Costa, Thercio Henrique de Carvalho ; do Nascimento, Rubens Maribondo
Total Authors: 11
Document type: Journal article
Source: STEEL RESEARCH INTERNATIONAL; v. 94, n. 6, p. 10-pg., 2023-03-28.
Abstract

Plasma nitriding has been extensively used to improve materials' surface and mechanical properties using conventional plasma techniques. However, this process generally results in a nonuniformity of the properties. In the cathodic cage plasma nitriding (CCPN), the plasma is active only on the surface of the cathodic cage, eliminating inherent defects of conventional plasma nitriding. Herein, a duplex treatment, CCPN and TiN deposition, is used on SINTER30 tool steel for the first time. Vickers microhardness tests, X-ray diffractometry, Raman scattering spectroscopy, and scratching tests characterize the samples. The results show that TiN post-coating attains higher surface hardness. All the groups increase their microhardness properties when compared with nontreated substrates. The prior treatment of plasma nitriding assists hardening of the substrate surface. The best condition is obtained when the sample is placed inside the titanium cage and positions directly on the sample port, with simultaneous duplex treatment. When the substrate passes through this simultaneous duplex process, peaks corresponding to Fe3N and TiN are observed at Raman spectra. Suitable TiN layers improve the film adhesion, which is correlated to the system's load-bearing capacity. (AU)

FAPESP's process: 12/15857-1 - Scientific studies and innovation application on CVD diamond, DLC and carbon nanostructures obtained by chemical vapor deposition technique
Grantee:Vladimir Jesus Trava-Airoldi
Support Opportunities: Research Projects - Thematic Grants