Advanced search
Start date
Betweenand


Triangular arrangements on the projective plane

Full text
Author(s):
Marchesi, Simone ; Valles, Jean
Total Authors: 2
Document type: Journal article
Source: EPIJOURNAL DE GEOMETRIE ALGEBRIQUE; v. 7, p. 20-pg., 2023-05-02.
Abstract

In this work we study line arrangements consisting in lines passing through three non-aligned points. We call them triangular arrangements. We prove that any combinatorics of a triangular arrangement is always realized by a Roots-of-Unity-Arrangement, which is a particular class of triangular arrangements. Among these Roots-of Unity-Arrangements, we provide conditions that ensure their freeness. Finally, we give two triangular arrangements having the same weak combinatorics, such that one is free but the other one is not. (AU)

FAPESP's process: 18/08524-2 - Arrangements and vector bundles
Grantee:Simone Marchesi
Support Opportunities: Research Grants - Visiting Researcher Grant - International
FAPESP's process: 17/03487-9 - Vector bundles: from the instanton family to a new regularity
Grantee:Simone Marchesi
Support Opportunities: Regular Research Grants