Advanced search
Start date
Betweenand


Contrast phase recognition in liver computer tomography using deep learning

Full text
Author(s):
Show less -
Rocha, Bruno Aragao ; Ferreira, Lorena Carneiro ; Rocha Vianna, Luis Gustavo ; Gomes Ferreira, Luma Gallacio ; Martins Ciconelle, Ana Claudia ; Da Silva Noronha, Alex ; Martins Cortez Filho, Joao ; Lima Nogueira, Lucas Salume ; Rocha Sampaio Leite, Jean Michel ; da Silva Filho, Mauricio Ricardo Moreira ; da Costa Leite, Claudia ; de Maria Felix, Marcelo ; Gutierrez, Marco Antonio ; Nomura, Cesar Higa ; Cerri, Giovanni Guido ; Carrilho, Flair Jose ; Ono, Suzane Kioko
Total Authors: 17
Document type: Journal article
Source: SCIENTIFIC REPORTS; v. 12, n. 1, p. 12-pg., 2022-11-24.
Abstract

Hepatocellular carcinoma (HCC) has become the 4th leading cause of cancer-related deaths, with high social, economical and health implications. Imaging techniques such as multiphase computed tomography (CT) have been successfully used for diagnosis of liver tumors such as HCC in a feasible and accurate way and its interpretation relies mainly on comparing the appearance of the lesions in the different contrast phases of the exam. Recently, some researchers have been dedicated to the development of tools based on machine learning (ML) algorithms, especially by deep learning techniques, to improve the diagnosis of liver lesions in imaging exams. However, the lack of standardization in the naming of the CT contrast phases in the DICOM metadata is a problem for real-life deployment of machine learning tools. Therefore, it is important to correctly identify the exam phase based only on the image and not on the exam metadata, which is unreliable. Motivated by this problem, we successfully created an annotation platform and implemented a convolutional neural network (CNN) to automatically identify the CT scan phases in the HCFMUSP database in the city of SAo Paulo, Brazil. We improved this algorithm with hyperparameter tuning and evaluated it with cross validation methods. Comparing its predictions with the radiologists annotation, it achieved an accuracy of 94.6%, 98% and 100% in the testing dataset for the slice, volume and exam evaluation, respectively. (AU)

FAPESP's process: 20/01079-3 - LivIA: a tool for diagnostic aid for hepatic lesions
Grantee:Jean Michel Rocha Sampaio Leite
Support Opportunities: Scholarships in Brazil - Technical Training Program - Technical Training
FAPESP's process: 20/00037-5 - LivIA: a tool for diagnostic aid for hepatic lesions
Grantee:Luis Gustavo Rocha Vianna
Support Opportunities: Scholarships in Brazil - Innovative Research in Small Business - PIPE
FAPESP's process: 21/04199-2 - LivIA: a tool for diagnostic Aid for hepatic lesions
Grantee:Luma Gallacio Gomes Ferreira
Support Opportunities: Scholarships in Brazil - Technical Training Program - Technical Training
FAPESP's process: 19/05723-7 - LivIA - a tool for diagnostic aid for hepatic lesions
Grantee:Luis Gustavo Rocha Vianna
Support Opportunities: Research Grants - Innovative Research in Small Business - PIPE
FAPESP's process: 20/07411-0 - LivIA: a tool for diagnostic aid for hepatic lesions
Grantee:João Martins Cortez Filho
Support Opportunities: Scholarships in Brazil - Technical Training Program - Technical Training