Advanced search
Start date
Betweenand


Electrical and mechanical properties of self-supported hydroxypropyl methylcellulose-polyaniline conducting films

Full text
Author(s):
Cavalheiro Maeda, Vinicius ; Correa, Cintia Marques ; Mamoru Otsuka Hamanaka, Marcos Henrique ; Hamanaka, Viviane Nogueira ; Molina, Celso ; Camilo, Fernanda F.
Total Authors: 6
Document type: Journal article
Source: RSC ADVANCES; v. 13, n. 12, p. 8-pg., 2023-03-08.
Abstract

The purpose of this work was to develop a simple method to produce self-supported films composed of hydroxypropyl methylcellulose (HPMC) and polyaniline (PANI) by the direct mixture of aqueous dispersions of both polymers with subsequent drying. The addition of HPMC, a cellulose derivative with an excellent film-forming capacity, was fundamental to overcoming the poor processability of PANI, which impairs its use in many technological applications. All films showed conductivity in the order of 10(-2) to 10(-3) S cm(-1), which is in the range for metals or semiconductors. The typical electroactivity of PANI was also maintained in the hybrid films. The thermal stability and the mechanical properties of the pristine PANI were also improved with the addition of HPMC. Cellulose-containing conducting polymers can be considered a material of the future, with possible applications in several areas, such as smart wallpapers, e-papers, and sensors. (AU)

FAPESP's process: 21/08987-5 - Cellulose membranes as support for nanomaterials: preparation and properties evaluation
Grantee:Fernanda Ferraz Camilo
Support Opportunities: Regular Research Grants
FAPESP's process: 18/20826-4 - SYNTHESIS AND PROPERTIES EVALUATION OF NANOPARTICLES SUPPORTED ON NON-MODIFIED CELLULOSE FILMS
Grantee:Fernanda Ferraz Camilo
Support Opportunities: Regular Research Grants