Advanced search
Start date
Betweenand


Time-Dependent Density-Functional Theory for Determining the Electron-Capture Cross Section for Protons Impacting on Atoms and Molecules

Full text
Author(s):
De Faria, Jhaison C. ; Santiago, Joao ; Francis, Ziad ; Bernal, Mario A.
Total Authors: 4
Document type: Journal article
Source: Journal of Physical Chemistry A; v. 127, n. 11, p. 7-pg., 2023-03-14.
Abstract

The use of the Time-Dependent Density-Functional Theory (TDDFT) has increased in the atomic collision field. Calculating the electron-capture cross section (ECCS) for protons is an important question in hadrontherapy and plasma physics, among other areas. In previous studies, it was shown that the approach based on the Local Density Approximation (LDA) fails in the 1-50 keV region, requiring the use of the Optimized Effective Potential (OEP) method. In this work, the ECCS values for 1-50 keV protons impacting on isolated hydrogen, carbon, nitrogen, oxygen, and nitrogenous atoms were determined using the TDDFT. It is shown that adding the Self Interaction Correction to the LDA (LDA-Sic) allows obtaining results close to those provided by the OEP and experiments, with the advantage that the LDA-Sic consumes less computational time. In addition, it was demonstrated that it is imperative to include the spin correction for the specific helium and oxygen cases, in order to get good results for the ECCS using the TDDFT. Theoretical results obtained in this work show excellent agreement with experimental values. (AU)

FAPESP's process: 15/21873-8 - Establishment and application of methodologies for optimizing imaging techniques in digital radiology
Grantee:Alessandra Tomal
Support Opportunities: Regular Research Grants
FAPESP's process: 18/15316-7 - Study of the interaction of heavy charged particles with DNA using computational methods
Grantee:Mario Antonio Bernal Rodriguez
Support Opportunities: Research Grants - Young Investigators Grants - Phase 2
FAPESP's process: 11/51594-2 - Development of a computational system for the simulation of the interaction of ionizing radiations with the human genetic material
Grantee:Mario Antonio Bernal Rodriguez
Support Opportunities: Research Grants - Young Investigators Grants
FAPESP's process: 20/08647-7 - Developments of X-ray characterization techniques and application in quantitative neuroscience
Grantee:Jean Rinkel
Support Opportunities: Regular Research Grants