Advanced search
Start date
Betweenand


CRAFS: a model to analyze two-dimensional X-ray diffraction patterns of plant cellulose

Full text
Author(s):
Oliveira, Rafael P. ; Driemeier, Carlos
Total Authors: 2
Document type: Journal article
Source: JOURNAL OF APPLIED CRYSTALLOGRAPHY; v. 46, p. 15-pg., 2013-08-01.
Abstract

Cellulose from higher plants is a vast renewable resource organized as crystals. Analysis of these crystals by X-ray diffraction poses very specific challenges, including ubiquitous crystallite texture and substantial overlapping of diffraction peaks. In this article, a tailor-made model named Cellulose Rietveld Analysis for Fine Structure (CRAFS) is developed to analyze two-dimensional X-ray diffraction patterns from raw and processed plant cellulose. One-dimensional powder diffractograms are analyzable as a particular case. The CRAFS model considers cellulose I beta crystal structure, fibrillar crystal shape, paracrystalline peak broadening, pseudo-Voigt peak profiles, harmonic crystallite orientation distribution function and diffraction in fiber geometry. Formulated on the basis of the Rietveld method, CRAFS is presently written in the MATLAB computing language. A set of meaningful coefficients are output from each analyzed pattern. To exemplify model applicability, representative samples are analyzed, bringing some general insights and evidencing the model's potential for systematic parameterization of the fine structure of raw and processed plant celluloses. (AU)

FAPESP's process: 10/05523-3 - Nanomorphologic changes of sugarcane lignocellulosic matter
Grantee:Carlos Eduardo Driemeier
Support Opportunities: Research Grants - Young Investigators Grants