Advanced search
Start date
Betweenand


Clustering through Continuous Facility Location Problems

Full text
Author(s):
Meira, Luis A. A. ; Miyazawa, Flavio K. ; Pedrosa, Lehilton L. C.
Total Authors: 3
Document type: Journal article
Source: THEORETICAL COMPUTER SCIENCE; v. 657, p. 9-pg., 2017-01-02.
Abstract

We consider the Continuous Facility Location Problem (ConFLP). Given a finite set of clients C subset of R-d and a number f is an element of R+, ConFLP consists in opening a set F' subset of R-d of facilities, each at cost f, and connecting each client to an open facility. The objective is to minimize the costs of opening facilities and connecting clients. We reduce ConFLP to the standard Facility Location Problem (FLP), by using the so-called approximate center sets. This reduction preserves the approximation, except for an error epsilon, and implies 1.488 + epsilon and 2.04 + epsilon-approximations when the connection cost is given by the Euclidean distance and the squared Euclidean distance, respectively. Moreover, we obtain approximate center sets for the case that the connection cost is the ath power of the Euclidean distance, achieving approximations for the corresponding problems, for any alpha >= 1. As a byproduct, we also obtain a polynomial-time approximation scheme for the k-median problem with this cost function, for any fixed k. (C) 2016 Elsevier B.V. All rights reserved. (AU)

FAPESP's process: 10/20710-4 - Approximation Algorithms for Facility Location Problems with Different Distance Functions
Grantee:Lehilton Lelis Chaves Pedrosa
Support Opportunities: Scholarships in Brazil - Doctorate