Advanced search
Start date
Betweenand


Entanglement, coherence, and charging process of quantum batteries

Full text
Author(s):
Kamin, F. H. ; Tabesh, F. T. ; Salimi, S. ; Santos, Alan C.
Total Authors: 4
Document type: Journal article
Source: PHYSICAL REVIEW E; v. 102, n. 5, p. 7-pg., 2020-11-06.
Abstract

Quantum devices are systems that can explore quantum phenomena, such as entanglement or coherence, for example, to provide some enhancement performance concerning their classical counterparts. In particular, quantum batteries are devices that use entanglement as the main element in their high performance in powerful charging. In this paper, we explore quantum battery performance and its relationship with the amount of entanglement that arises during the charging process. By using a general approach to a two- and three-cell battery, our results suggest that entanglement is not the main resource in quantum batteries, where there is a nontrivial correlation-coherence tradeoff as a resource for the high efficiency of such quantum devices. (AU)

FAPESP's process: 19/22685-1 - Memory effect and the transition from weak to strong disorder
Grantee:Alan Costa dos Santos
Support Opportunities: Scholarships in Brazil - Post-Doctoral