Advanced search
Start date
Betweenand


Computational prediction of high thermoelectric performance in As2Se3 by engineering out-of-equilibrium defects

Full text
Author(s):
Chaves, Anderson Silva ; Silva, Murilo Aguiar ; Antonelli, Alex
Total Authors: 3
Document type: Journal article
Source: Physical Chemistry Chemical Physics; v. 26, n. 5, p. 7-pg., 2024-01-09.
Abstract

We employed first-principles calculations to investigate the thermoelectric transport properties of the compound As2Se3. Early experiments and calculations have indicated that these properties are controlled by a kind of native defect called antisites. Our calculations using the linearized Boltzmann transport equation within the relaxation time approximation show good agreement with the experiments for defect concentrations of the order of 10(19) cm(-3). Based on our total energy calculations, we estimated the equilibrium concentration of antisite defects to be about 10(14) cm(-3). These results suggest that the large concentration of defects in the experiments is due to kinetic and/or off-stoichiometry effects and in principle it could be lowered, yielding relaxation times similar to those found in other chalcogenide compounds. In this case, for relaxation time higher than 10 fs, we obtained high thermoelectric figures of merit of 3 for the p-type material and 2 for the n-type one. (AU)

FAPESP's process: 17/26105-4 - Multi-user equipment approved in grant 2016/23891-6 high performace computational cluster
Grantee:Alex Antonelli
Support Opportunities: Multi-user Equipment Program
FAPESP's process: 15/26434-2 - Study of the electronic, structural, and transport properties of materials for thermoelectric applications via ab initio calculations
Grantee:Anderson Silva Chaves
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 16/23891-6 - Computer modeling of condensed matter
Grantee:Alex Antonelli
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 19/26088-8 - Study of doping effects in As2Se3 and As2S3 from first-principles calculations
Grantee:Anderson Silva Chaves
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 10/16970-0 - Computational modeling of condensed matter: a multiscale approach
Grantee:Alex Antonelli
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 13/08293-7 - CCES - Center for Computational Engineering and Sciences
Grantee:Munir Salomao Skaf
Support Opportunities: Research Grants - Research, Innovation and Dissemination Centers - RIDC