Advanced search
Start date
Betweenand


Electrochemical detection of poly(3-hydroxybutyrate) production from Burkholderia glumae MA13 using a molecularly imprinted polymer-reduced graphene oxide modified electrode

Full text
Author(s):
da Conceicao, Emanuela ; Buffon, Edervaldo ; Beluomini, Maisa Azevedo ; Falone, Max Fabricio ; de Andrade, Fernanda Batista ; Contiero, Jonas ; Stradiotto, Nelson Ramos
Total Authors: 7
Document type: Journal article
Source: Microchimica Acta; v. 191, n. 8, p. 12-pg., 2024-08-01.
Abstract

The development and application of an electrochemical sensor is reported for detection of poly(3-hydroxybutyrate) (P3HB) - a bioplastic derived from agro-industrial residues. To overcome the challenges of molecular imprinting of macromolecules such as P3HB, this study employed methanolysis reaction to break down the P3HB biopolymer chains into methyl 3-hydroxybutyrate (M3HB) monomers. Thereafter, M3HB were employed as the target molecules in the construction of molecularly imprinted sensors. The electrochemical device was then prepared by electropolymerizing a molecularly imprinted poly (indole-3-acetic acid) thin film on a glassy carbon electrode surface modified with reduced graphene oxide (GCE/rGO-MIP) in the presence of M3HB. Electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), scanning electron microscopy with field emission gun (SEM-FEG), Raman spectroscopy, attenuated total reflection Fourier-transform infrared (ATR-FTIR) and X-ray Photoelectron Spectroscopy (XPS) were employed to characterize the electrode surface. Under ideal conditions, the MIP sensor exhibited a wide linear working range of 0.1 - 10 nM and a detection limit of 0.3 pM (n = 3). The sensor showed good repeatability, selectivity, and stability over time. For the sensor application, the bioproduction of P3HB was carried out in a bioreactor containing the Burkholderia glumae MA13 strain and sugarcane byproducts as a supplementary carbon source. The analyses were validated through recovery assays, yielding recovery values between 102 and 104%. These results indicate that this MIP sensor can present advantages in the monitoring of P3HB during the bioconversion process. (AU)

FAPESP's process: 17/22401-8 - Fruit-refinery: obtention processes, characterization methods and generation of products derived from residues of the fruitculture
Grantee:Nelson Ramos Stradiotto
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 18/12131-6 - Wireless electrochemical sensors based screen-printed electrodes modified with metallic nanopores for determination of flavonoids in wastes of the citrus industry
Grantee:Maísa Azevedo Beluomini
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 19/13818-8 - Development of disposable sensors based on 3D graphene oxide, metal nanoparticles and molecularly imprinted polymers for the determination of phenolic acids in fruticulture waste
Grantee:Edervaldo Buffon
Support Opportunities: Scholarships in Brazil - Doctorate