Submanifolds of codimension two with constant Moebius curvature and flat normal bu...
Full text | |
Author(s): |
Antas, M. S. R.
;
Tojeiro, R.
Total Authors: 2
|
Document type: | Journal article |
Source: | MANUSCRIPTA MATHEMATICA; v. 174, n. 3-4, p. 32-pg., 2024-04-01. |
Abstract | |
We classify isometric immersions f:Mn -> Rn+p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:M<^>{n}\rightarrow \mathbb {R}<^>{n+p}$$\end{document}, n >= 5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 5$$\end{document} and 2p <= n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2p \le n$$\end{document}, with constant Moebius curvature and flat normal bundle. (AU) | |
FAPESP's process: | 22/16097-2 - Modern methods in differential geometry and geometric analysis |
Grantee: | Paolo Piccione |
Support Opportunities: | Research Projects - Thematic Grants |
FAPESP's process: | 19/04027-7 - Submanifolds of codimension two with constant Moebius curvature and flat normal bundle |
Grantee: | Mateus da Silva Rodrigues Antas |
Support Opportunities: | Scholarships in Brazil - Doctorate |