Advanced search
Start date
Betweenand


On the multi-objective perspective of discrete topology optimization in fluid-structure interaction problems

Full text
Author(s):
Azevedo, Anderson Soares da Costa ; Ranjbarzadeh, Shahin ; Gioria, Rafael dos Santos ; Silva, Emilio Carlos Nelli ; Picelli, Renato
Total Authors: 5
Document type: Journal article
Source: Applied Mathematical Modelling; v. 127, p. 17-pg., 2023-11-30.
Abstract

Fluid-structure interaction is a challenging topic that addresses fluid and solid physics, as well as the stress coupling between them. Traditional topology optimization methods are performed with coupling load interpolation schemes in order to have some information on fluid flow sensitivity analysis and improve compliance minimization into design-dependent problems. In this paper, we propose a strategy to design fluid-structure systems by combining solid and fluid objectives without the need for the coupling load interpolation scheme. Therefore, we investigate topology optimization applied to fluid-structure interaction problems via a multi objective formulation. We combine structural compliance with some fluid flow objective functions (energy dissipation, downforce, and drag) subject to a volume constraint. We assume linear elasticity for the solid and the steady incompressible Navier-Stokes equations for the fluid. The optimization problem is solved by using sequential integer linear programming via the TOBS (Topology Optimization of Binary Structures) method with a geometry trimming (GT) technique. It is a gradient-based method that produces explicit (discrete) boundaries that are convenient for coupled physics problems. Numerical results are presented for two and three-dimensional problems considering low to moderate Reynolds numbers. We demonstrate that the proposed multi-objective approach yields physically meaningful designs with improved performance, highlighting that the incorporation of coupling load interpolation into fluid-structure interaction optimization is redundant. (AU)

FAPESP's process: 18/05797-8 - Addressing design challenges of offshore structures via Multiphysics topology optimization
Grantee:Renato Picelli Sanches
Support Opportunities: Research Grants - Young Investigators Grants
FAPESP's process: 20/15230-5 - Research Centre for Greenhouse Gas Innovation - RCG2I
Grantee:Julio Romano Meneghini
Support Opportunities: Research Grants - Research Centers in Engineering Program
FAPESP's process: 14/50279-4 - Brasil Research Centre for Gas Innovation
Grantee:Julio Romano Meneghini
Support Opportunities: Research Grants - Research Centers in Engineering Program
FAPESP's process: 19/01685-3 - Addressing Design Challenges of Offshore Structures via Multiphysics Topology Optimization
Grantee:Renato Picelli Sanches
Support Opportunities: Scholarships in Brazil - Young Researchers