Advanced search
Start date
Betweenand


Machine learning prediction of multiple anthelmintic resistance and gastrointestinal nematode control in sheep flocks

Full text
Author(s):
Niciura, Simone Cristina Meo ; Sanches, Guilherme Martineli
Total Authors: 2
Document type: Journal article
Source: REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA; v. 33, n. 1, p. 11-pg., 2024-01-01.
Abstract

The high prevalence of Haemonchus contortus and its anthelmintic resistance have affected sheep production worldwide. Machine learning approaches are able to investigate the complex relationships among the factors involved in resistance. Classification trees were built to predict multidrug resistance from 36 management practices in 27 sheep flocks. Resistance to five anthelmintics was assessed using a fecal egg count reduction test (FECRT), and 20 flocks with FECRT < 80% for four or five anthelmintics were considered resistant. The data were randomly split into training (75%) and test (25%) sets, resampled 1,000 times, and the classification trees were generated for the training data. Of the 1,000 trees, 24 (2.4%) showed 100% accuracy, sensitivity, and specificity in predicting a flock as resistant or susceptible for the test data. Forage species was a split common to all 24 trees, and the most frequent trees (12/24) were split by forage species, grazing pasture area, and fecal examination. The farming system, Suffolk sheep breed, and anthelmintic choice criteria were practices highlighted in the other trees. These management practices can be used to predict the anthelmintic resistance status and guide measures for gastrointestinal nematode control in sheep flocks. (AU)

FAPESP's process: 21/11842-9 - Genome-wide association study (GWAS) and functional genomics of parasite resistance in Morada Nova sheep
Grantee:Simone Cristina Méo Niciura
Support Opportunities: Scholarships abroad - Research
FAPESP's process: 21/02535-5 - Parasite-host-environment approach to control anthelmintic resistance in sheep flocks
Grantee:Ana Carolina de Souza Chagas
Support Opportunities: Research Projects - Thematic Grants