Advanced search
Start date
Betweenand


Recycling spent batteries to green innovation: a CuCo-based composite as an electrocatalyst for CO2 reduction

Full text
Author(s):
da Cruz, Jean C. ; e Silva, Ricardo M. ; da Silva, Gelson T. S. T. ; Mascaro, Lucia H. ; Ribeiro, Caue
Total Authors: 5
Document type: Journal article
Source: SUSTAINABLE ENERGY & FUELS; v. 8, n. 14, p. 9-pg., 2024-05-24.
Abstract

The reuse of solid and gaseous waste is necessary to achieve a significant advance toward more sustainable and eco-friendly processes. It is a challenge in the electronic industry, where the materials are generally expensive and toxic (if disposed of in nature), requiring strategies for maximum material recovery. Here, we report a strategy to recycle lithium-ion batteries (LIBs), preparing a copper-cobalt composite catalyst designed to operate in electrochemical CO2 reduction to hydrocarbons. The proposed method allows fast and easy electrodeposition of a thin layer of spherical Cu/Co nanoparticles over a conductive substrate. The electrodes were assessed for their CO2 reduction activity at different potentials (-0.13, -0.33, and -0.53 V vs. RHE). As a result, we achieved different products such as methanol, acetic acid, ethanol, and hydrogen with selectivity according to the applied potential. The highest production and faradaic efficiency for C1+ compounds were for methanol, reaching 103 mu mol mg(cat) and 65% after 3 h of reaction at an applied potential of -0.13 V vs. RHE. A proposed scheme, based on in situ FTIR spectra using D2O, suggests that CO2 initially undergoes one-electron reduction, forming *COads, which acts as a stable intermediate on the Cu surface. The Cu surface predominantly drives the reaction despite its higher amount in the CuCo-based composites. From that, various pathways can arise from the protonation of the intermediate, leading to the production of C2+ alcohols in smaller quantities or C-1 alcohols in larger quantities and intensity. (AU)

FAPESP's process: 18/01258-5 - Novel chemical catalytic and photocatalytic processes for the direct conversion of methane and CO2 to products
Grantee:José Maria Correa Bueno
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 13/07296-2 - CDMF - Center for the Development of Functional Materials
Grantee:Elson Longo da Silva
Support Opportunities: Research Grants - Research, Innovation and Dissemination Centers - RIDC
FAPESP's process: 20/09628-6 - Development of heterostructured semiconducting nanoparticles for methane conversion by photocatalytic process
Grantee:Ricardo Marques e Silva
Support Opportunities: Scholarships in Brazil - Post-Doctoral
FAPESP's process: 17/11986-5 - Generation and storage of New Energy: bringing technological development for the country
Grantee:Ana Flávia Nogueira
Support Opportunities: Research Grants - Research Centers in Engineering Program
FAPESP's process: 22/10255-5 - Architectures based on metal phosphides and nitrides for photo(electro)chemical conversion of CO2 into C2+ compounds
Grantee:Gelson Tiago dos Santos Tavares da Silva
Support Opportunities: Scholarships in Brazil - Post-Doctoral