Advanced search
Start date
Betweenand


Links of Singularities of Inner Non-degenerate Mixed Functions

Full text
Author(s):
dos Santos, Raimundo N. Araujo ; Bode, Benjamin ; Quiceno, Eder L. Sanchez
Total Authors: 3
Document type: Journal article
Source: BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY; v. 55, n. 3, p. 49-pg., 2024-09-01.
Abstract

We introduce the notion of a (strongly) inner non-degenerate mixed function f:C2 -> C.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:{\mathbb {C}}<^>2\rightarrow {\mathbb {C}}.$$\end{document} We show that inner non-degenerate mixed polynomials have weakly isolated singularities and strongly inner non-degenerate mixed polynomials have isolated singularities. Furthermore, under one additional assumption, which we call "Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}-niceness", the links of these singularities can be completely characterized in terms of the Newton boundary of f. In particular, adding terms above the Newton boundary does not affect the topology of the link. (AU)

FAPESP's process: 19/21181-0 - New frontiers in Singularity Theory
Grantee:Regilene Delazari dos Santos Oliveira
Support Opportunities: Research Projects - Thematic Grants
FAPESP's process: 19/11415-3 - Classication of Real and Complex Singularities
Grantee:Eder Leandro Sanchez Quiceno
Support Opportunities: Scholarships abroad - Research Internship - Doctorate
FAPESP's process: 17/25902-8 - Classification of real and complex singularities
Grantee:Eder Leandro Sanchez Quiceno
Support Opportunities: Scholarships in Brazil - Doctorate