Advanced search
Start date
Betweenand


Gender Bias Detection in Court Decisions: A Brazilian Case Study

Full text
Author(s):
Benatti, Raysa ; Severi, Fabiana ; Avila, Sandra ; Colombini, Esther Luna
Total Authors: 4
Document type: Journal article
Source: PROCEEDINGS OF THE 2024 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, ACM FACCT 2024; v. N/A, p. 18-pg., 2024-01-01.
Abstract

Data derived from the realm of the social sciences is often produced in digital text form, which motivates its use as a source for natural language processing methods. Researchers and practitioners have developed and relied on artificial intelligence techniques to collect, process, and analyze documents in the legal field, especially for tasks such as text summarization and classification. While increasing procedural efficiency is often the primary motivation behind natural language processing in the field, several works have proposed solutions for human rights-related issues, such as assessment of public policy and institutional social settings. One such issue is the presence of gender biases in court decisions, which has been largely studied in social sciences fields; biased institutional responses to gender-based violence are a violation of international human rights dispositions since they prevent gender minorities from accessing rights and hamper their dignity. Natural language processing-based approaches can help detect these biases on a larger scale. Still, the development and use of such tools require researchers and practitioners to be mindful of legal and ethical aspects concerning data sharing and use, reproducibility, domain expertise, and value-charged choices. In this work, we (a) present an experimental framework developed to automatically detect gender biases in court decisions issued in Brazilian Portuguese and (b) describe and elaborate on features we identify to be critical in such a technology, given its proposed use as a support tool for research and assessment of court activity. (AU)

FAPESP's process: 13/08293-7 - CCES - Center for Computational Engineering and Sciences
Grantee:Munir Salomao Skaf
Support Opportunities: Research Grants - Research, Innovation and Dissemination Centers - RIDC
FAPESP's process: 23/12086-9 - Araceli: Artificial Intelligence in the Fight Against Child Sexual Abuse
Grantee:Sandra Eliza Fontes de Avila
Support Opportunities: Regular Research Grants
FAPESP's process: 20/09838-0 - BI0S - Brazilian Institute of Data Science
Grantee:João Marcos Travassos Romano
Support Opportunities: Research Grants - Research Centers in Engineering Program