Advanced search
Start date
Betweenand


Additive manufacturing of bioactive and biodegradable poly (lactic acid)-tricalcium phosphate scaffolds modified with zinc oxide for guided bone tissue repair

Full text
Author(s):
Harb, Samarah, V ; Kolanthai, Elayaraja ; Pinto, Leonardo A. ; Beatrice, Cesar A. G. ; Bezerra, Ewerton de O. T. ; Backes, Eduardo H. ; Costa, Lidiane C. ; Seal, Sudipta ; Pessan, Luiz A.
Total Authors: 9
Document type: Journal article
Source: Biomedical Materials; v. 19, n. 5, p. 16-pg., 2024-09-01.
Abstract

Bioactive and biodegradable scaffolds that mimic the natural extracellular matrix of bone serve as temporary structures to guide new bone tissue growth. In this study, 3D-printed scaffolds composed of poly (lactic acid) (PLA)-tricalcium phosphate (TCP) (90-10 wt.%) were modified with 1%, 5%, and 10 wt.% of ZnO to enhance bone tissue regeneration. A commercial chain extender named Joncryl was incorporated alongside ZnO to ensure the printability of the composites. Filaments were manufactured using a twin-screw extruder and subsequently used to print 3D scaffolds via fused filament fabrication (FFF). The scaffolds exhibited a homogeneous distribution of ZnO and TCP particles, a reproducible structure with 300 mu m pores, and mechanical properties suitable for bone tissue engineering, with an elastic modulus around 100 MPa. The addition of ZnO resulted in enhanced surface roughness on the scaffolds, particularly for ZnO microparticles, achieving values up to 241 nm. This rougher topography was responsible for enhancing protein adsorption on the scaffolds, with an increase of up to 85% compared to the PLA-TCP matrix. Biological analyses demonstrated that the presence of ZnO promotes mesenchymal stem cell (MSC) proliferation and differentiation into osteoblasts. Alkaline phosphatase (ALP) activity, an important indicator of early osteogenic differentiation, increased up to 29%. The PLA-TCP composite containing 5% ZnO microparticles exhibited an optimized degradation rate and enhanced bioactivity, indicating its promising potential for bone repair applications. (AU)

FAPESP's process: 17/09609-9 - Development of bioinspired scaffolds of PLA/bioactive ceramic fillers through 3D printing
Grantee:Luiz Antonio Pessan
Support Opportunities: Regular Research Grants
FAPESP's process: 19/27415-2 - Bioactive scaffolds with surface modification by plasma
Grantee:Luiz Antonio Pessan
Support Opportunities: Regular Research Grants
FAPESP's process: 17/11366-7 - Development of bio-inspired PLA/bioglass scaffolds via 3D printed
Grantee:Eduardo Henrique Backes
Support Opportunities: Scholarships in Brazil - Doctorate
FAPESP's process: 18/26060-3 - Bioactive and bactericidal scaffolds for bone regeneration via 3D printing
Grantee:Samarah Vargas Harb
Support Opportunities: Scholarships in Brazil - Post-Doctoral