Advanced search
Start date
Betweenand


MAX Phase (Nb4AlC3) For Electrocatalysis Applications

Full text
Author(s):
Gandara, Meriene ; Mladenovic, Dusan ; Martins, Marta de Jesus Oliveira ; Rakocevic, Lazar ; de Assis, Joao Marcos Kruszynski ; Sljukic, Biljana ; Goncalves, Emerson Sarmento
Total Authors: 7
Document type: Journal article
Source: SMALL; v. 20, n. 29, p. 15-pg., 2024-02-25.
Abstract

In search for novel materials to replace noble metal-based electrocatalysts in electrochemical energy conversion and storage devices, special attention is given to a distinct class of materials, MAX phase that combines advantages of ceramic and metallic properties. Herein, Nb4AlC3 MAX phase is prepared by a solid-state mixing reaction and characterized morphologically and structurally by transmission and scanning electron microscopy with energy-dispersive X-ray spectroscopy, nitrogen-sorption, X-ray diffraction analysis, X-ray photoelectron and Raman spectroscopy. Electrochemical performance of Nb4AlC3 in terms of capacitance as well as for oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) is evaluated in different electrolytes. The specific capacitance Cs of 66.4, 55.0, and 46.0 F g(-1) at 5 mV s(-1) is determined for acidic, neutral and alkaline medium, respectively. Continuous cycling reveals high capacitance retention in three electrolyte media; moreover, increase of capacitance is observed in acidic and neutral media. The electrochemical impedance spectroscopy showed a low charge transfer resistance of 64.76 omega cm(2) that resulted in better performance for HER in acidic medium (Tafel slope of 60 mV dec(-1)). In alkaline media, the charge storage value in the double layer is 360 mF cm(-2 )(0.7 V versus reversible hydrogen electrode) and the best ORR performance of the Nb4AlC3 is achieved in this medium (Tafel slope of 126 mV dec(-1)). (AU)

FAPESP's process: 22/02737-0 - Development of supercapacitor devices from 2D and 3D nanomaterial electrodes: graphene, MXenes and metal nanooxides
Grantee:Emerson Sarmento Gonçalves
Support Opportunities: Regular Research Grants
FAPESP's process: 22/02347-7 - New technologies for supercapacitors and lithium-ion batteries from rare earth-doped MXenes
Grantee:Meriene Gandara
Support Opportunities: Scholarships in Brazil - Doctorate