Advanced search
Start date
Betweenand


Peptide Fraction from Naja mandalayensis Snake Venom Showed Neuroprotection Against Oxidative Stress in Hippocampal mHippoE-18 Cells but Not in Neuronal PC12 Cells

Full text
Author(s):
Silva, Brenda R. ; Mendes, Lais C. ; Echeverry, Marcela B. ; Juliano, Maria Aparecida ; Beraldo-Neto, Emidio ; Alberto-Silva, Carlos
Total Authors: 6
Document type: Journal article
Source: ANTIOXIDANTS; v. 14, n. 3, p. 18-pg., 2025-02-26.
Abstract

Functional characterization of peptide fraction (PF) from snake venom has provided novel opportunities to investigate possible neuroprotective compounds relevant to pharmaceuticals. This study was performed to investigate the PF-mediated neuroprotection obtained from Naja mandalayensis snake venom, a member of the Elapidae family, using two neuronal cell lines, undifferentiated PC12 and differentiated mHippoE-18, in response to H2O2-induced oxidative stress. Cells were pre-treated for 4 h with PF (10, 1, 0.01, and 0.001 mu g mL-1), and thereafter exposed to H2O2 (0.5 mmol L-1) for 20 h. Then, the oxidative stress markers and label-free differential proteome strategy were analyzed to understand the neuroprotective effects of PF. In PC12 cells, PF showed no neuroprotective effects against oxidative stress. In mHippoE-18 cells, PF at 0.01 and 0.001 mu g mL-1 increased the viability and metabolism of cells against H2O2-induced neurotoxicity, reducing reactive oxygen species (ROS) generation. Interestingly, PF also exhibited a substantial reduction in baseline ROS levels compared to the control, indicating that PF could have compounds with antioxidant features. The comparative proteomic profiling identified 53 proteins with differential expression related to antioxidant action, catalysis, molecular function regulators, structural molecule activity, translation regulatory activity, ATP, and binding. The PF + H2O2 group indicated that protein expression is 6% upregulated, 4% downregulated, and 94% unchanged compared to the H2O2 group. Three significant proteins upregulated in the PF + H2O2 group, including elongation factor 2 (P58252), proteasome subunit alpha type (E9Q0X0), and E2 ubiquitin-conjugating enzyme (A0A338P786), suggested that PF-mediated neuroprotection happens through translational regulation and the degradation of defective proteins via the proteasome complex. Additionally, differential protein expression in PF changed the metabolism, protein synthesis, synaptic activity, and intracellular transport, suggesting that PF contains the rich mixture of bioactive peptides of interest pharmacologically. Overall, this study offers new opportunities for evaluating whether PF's neuroprotective features in specific neuronal cells are maintained and to investigate neurodegenerative disease drug development processes. (AU)

FAPESP's process: 23/03608-1 - Bioprospection of neuroprotective peptides from snake venoms in vitro and in vivo experimental models for the study of neurodegenerative diseases
Grantee:Carlos Alberto da Silva
Support Opportunities: Regular Research Grants
FAPESP's process: 18/13588-0 - Multi - user equipment approved in grant 2012/50191-4: mass spectrometer impact II - Bruker
Grantee:Maria Aparecida Juliano
Support Opportunities: Multi-user Equipment Program