Advanced search
Start date
Betweenand


Continuity of attractors of parabolic equations with nonlinear boundary conditions and rapidly varying boundaries. The case of a Lipschitz deformation

Full text
Author(s):
Aragao, Gleiciane S. ; Arrieta, Jose M. ; Bruschi, Simone M.
Total Authors: 3
Document type: Journal article
Source: Journal of Differential Equations; v. 429, p. 43-pg., 2025-02-21.
Abstract

In this paper we obtain the continuity of attractors for nonlinear parabolic equations with nonlinear boundary conditions when the boundary of the domain varies rapidly as a parameter F goes to zero. We consider the case where the boundary of the domain presents a highly oscillatory behavior as the parameter F goes to zero. For the case where we have a Lipschitz deformation of the boundary with the Lipschitz constant uniformly bounded in F but the boundaries do not approach in a Lipschitz sense, the solutions of these equations converge in certain sense to the solution of a limit parabolic equation of the same type but where the boundary condition has a factor that captures the oscillations of the boundary. To address this problem, it is necessary to consider the notion of convergence of functions defined in varying domains and the convergence of a family of operators defined in different Banach spaces. Moreover, since we consider problems with nonlinear boundary conditions, it is necessary to extend these concepts to the case of spaces with negative exponents and to operators defined between these spaces. (AU)

FAPESP's process: 20/14075-6 - Dynamical systems and their attractors under perturbations
Grantee:Alexandre Nolasco de Carvalho
Support Opportunities: Research Projects - Thematic Grants