Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Characterizing 3-Connected Planar Graphs and Graphic Matroids

Full text
Author(s):
Lemos, Manoel [1] ; Reid, Talmage James [2] ; Wu, Haidong [2]
Total Authors: 3
Affiliation:
[1] Univ Fed Pernambuco, Dept Matemat, Recife, PE - Brazil
[2] Univ Mississippi, Dept Math, University, MS 38677 - USA
Total Affiliations: 2
Document type: Journal article
Source: JOURNAL OF GRAPH THEORY; v. 64, n. 2, p. 165-174, JUN 2010.
Web of Science Citations: 3
Abstract

A well-known result of Tutte states that a 3-connected graph G is planar if and only if every edge of G is contained in exactly two induced non-separating circuits. Bixby and Cunningham generalized Tutte's result to binary matroids. We generalize both of these results and give new characterizations of both 3-connected planar graphs and 3-connected graphic matroids. Our main result determines when a natural necessary condition for a binary matroid to be graphic is also sufficient. (C) 2009 Wiley Periodicals, Inc. J Graph Theory 64: 165-174, 2010 (AU)

FAPESP's process: 03/09925-5 - Foundations of computer science: combinatory algorithms and discrete structures
Grantee:Yoshiharu Kohayakawa
Support Opportunities: PRONEX Research - Thematic Grants