Effects of partial capping in the contaminants mobilization and microbial degradat...
The generalized Ricci curvature on contact Calabi-Yau 7-manifolds
Full text | |
Author(s): |
Etiene, Tiago
[1, 2]
;
Nonato, L. Gustavo
[3]
;
Scheidegger, Carlos
[4]
;
Tierny, Julien
[5]
;
Peters, Thomas J.
[6]
;
Pascucci, Valerio
[1, 2]
;
Kirby, Robert M.
[1, 2]
;
Silva, Claudio T.
[1, 2]
Total Authors: 8
|
Affiliation: | [1] Univ Utah, Sch Computing, Salt Lake City, UT 84112 - USA
[2] Univ Utah, SCI Inst, Salt Lake City, UT 84112 - USA
[3] Univ Sao Paulo, Dept Matemat Aplicada & Estat, Inst Ciencias Matemat & Comutacao, BR-13560970 Sao Carlos, SP - Brazil
[4] AT&T Labs Res, Madison, NJ 07940 - USA
[5] CNRS LTCI Telecom ParisTech, F-75013 Paris - France
[6] Univ Connecticut, Dept Comp Sci & Engn, U 2155, Dept Math, Storrs, CT 06269 - USA
Total Affiliations: 6
|
Document type: | Journal article |
Source: | IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS; v. 18, n. 6, p. 952-965, JUN 2012. |
Web of Science Citations: | 19 |
Abstract | |
The broad goals of verifiable visualization rely on correct algorithmic implementations. We extend a framework for verification of isosurfacing implementations to check topological properties. Specifically, we use stratified Morse theory and digital topology to design algorithms which verify topological invariants. Our extended framework reveals unexpected behavior and coding mistakes in popular publicly available isosurface codes. (AU) | |
FAPESP's process: | 08/03349-6 - Geometry processing in simplicial meshes |
Grantee: | Luis Gustavo Nonato |
Support Opportunities: | Scholarships abroad - New Frontiers |