Advanced search
Start date
Betweenand
(Reference retrieved automatically from Google Scholar through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Multifractal analysis of DNA walks and trails

Full text
Author(s):
Rosas‚ A. ; Nogueira Jr‚ E. ; Fontanari‚ J.F.
Total Authors: 3
Document type: Journal article
Source: Physical Review E; v. 66, n. 6, p. 061906, 2002.
Abstract

The characterization of the long-range order and fractal properties of DNA sequences has proved a difficult though rewarding task mainly due to the mosaic character of DNA consisting of many interwoven patches of various lengths with different nucleotide constitutions. We apply here a recently proposed generalization of the detrended fluctuation analysis method to show that the DNA walk construction, in which the DNA sequence is viewed as a time series, exhibits a monofractal structure regardless of the existence of local trends in the series. In addition, we point out that the monofractal structure of the DNA walks carries over to an apparently alternative graphical construction given by the projection of the DNA walk into the d spatial coordinates, termed DNA trails. In particular, we calculate the fractal dimension D-t of the DNA trails using a well-known result of fractal theory linking D-t to the Hurst exponent H of the corresponding DNA walk. Comparison with estimates obtained by the standard box-counting method allows the evaluation of both finite-length and local trends effects. (AU)

FAPESP's process: 99/09644-9 - Theoretical Molecular Evolution
Grantee:José Fernando Fontanari
Support Opportunities: Research Projects - Thematic Grants