Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Structural and Electronic Properties of Lithiated SnO2. A Periodic DFT Study

Full text
Author(s):
Sensato, Fabricio R. [1] ; Gracia, Lourdes [2] ; Beltran, Armando [2] ; Andres, Juan [2] ; Longo, Elson [3]
Total Authors: 5
Affiliation:
[1] Univ Fed Sao Paulo, UNIFESP, Inst Ciencias Ambientais Quim & Farmaceut, BR-09972270 Diadema - Brazil
[2] Univ Jaume 1, Dept Quim Fis & Analit, E-12071 Castellon de La Plana - Spain
[3] Univ Estadual Paulista, UNESP, Inst Quim, BR-14800900 Araraquara - Brazil
Total Affiliations: 3
Document type: Journal article
Source: Journal of Physical Chemistry C; v. 116, n. 30, p. 16127-16137, AUG 2 2012.
Web of Science Citations: 8
Abstract

The structural and electronic properties of the intercalation compound LixSnO2 (x = 1/16, 1/8, 1/4, 1/2, 1) as well as the inherent diffusion mechanism of Li ion into the rutile SnO2 were investigated by means of periodic density functional calculations. Optimized structural parameters, cohesive energies, electronic band structure, and density-of-states and Mulliken charges for the LixSnO2 system at different Li ordering for each Li content are reported. The energetic profiles for the Li diffusion process into rutile SnO2 are also presented. Our calculation indicates substantial host distortion around intercalation sites, predominantly along the ab-planes. These deformations are found to be related to the soft B-1g, E-u, A(2g), and A(1g) vibrational modes of very low frequency and therefore easy to be achieved. The corresponding variation in volume monotonically increases with the Li concentration. Cohesive energies are consistent with continuous and reversible intercalation process. In lithiated SnO2, lithium is significantly ionized; however, the distribution pattern of the charge transferred from the lithium to the host is very dependent upon the ion concentration. By increasing the Li content, the relative amount of charge transferred to the Sn atoms decreases whereas the charge transferred to oxygen atoms increases. Lithium intercalation causes a chemical reduction of SnO2 and yields metallic properties. Effects induced by Li intercalation on the electronic band structures of SnO2 were assessed according to their origins, i.e., if they originate from lattice expansion or from chemical reduction. The energy difference between the valence-band maximum and conduction-band minimum of lithiated SnO2 decreases with increasing Li content. Lithium diffusion along the c-direction demands significantly lower activation energy than the energy required for diffusion along ab-planes. Energetic barriers related to the lithium diffusion into SnO2 were found to be dependent upon the Li content. (AU)

FAPESP's process: 08/57872-1 - National Institute for Materials Science in Nanotechnology
Grantee:Elson Longo da Silva
Support Opportunities: Research Projects - Thematic Grants