Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

The modularity of seed dispersal: differences in structure and robustness between bat- and bird-fruit networks

Full text
Author(s):
Ribeiro Mello, Marco Aurelio [1] ; Darcie Marquitti, Flavia Maria [2] ; Guimaraes, Jr., Paulo R. [3, 4] ; Viktoria Kalko, Elisabeth Klara [1, 5] ; Jordano, Pedro [4] ; Martinez de Aguiar, Marcus Aloizio [6]
Total Authors: 6
Affiliation:
[1] Univ Ulm, Inst Expt Okol, D-89069 Ulm - Germany
[2] Univ Estadual Campinas, Programa Posgrad Ecol, BR-13083970 Campinas, SP - Brazil
[3] Univ Sao Paulo, Dept Ecol, BR-05508900 Sao Paulo - Brazil
[4] CSIC, Integrat Ecol Grp, Estac Bio Donana, E-41080 Seville - Spain
[5] Smithsonian Trop Res Inst, Balboa, Ancon - Panama
[6] Univ Estadual Campinas, Inst Fis Gleb Wataghin, BR-13083970 Campinas, SP - Brazil
Total Affiliations: 6
Document type: Journal article
Source: Oecologia; v. 167, n. 1, p. 131-140, SEP 2011.
Web of Science Citations: 56
Abstract

In networks of plant-animal mutualisms, different animal groups interact preferentially with different plants, thus forming distinct modules responsible for different parts of the service. However, what we currently know about seed dispersal networks is based only on birds. Therefore, we wished to fill this gap by studying bat-fruit networks and testing how they differ from bird-fruit networks. As dietary overlap of Neotropical bats and birds is low, they should form distinct mutualistic modules within local networks. Furthermore, since frugivory evolved only once among Neotropical bats, but several times independently among Neotropical birds, greater dietary overlap is expected among bats, and thus connectance and nestedness should be higher in bat-fruit networks. If bat-fruit networks have higher nestedness and connectance, they should be more robust to extinctions. We analyzed 1 mixed network of both bats and birds and 20 networks that consisted exclusively of either bats (11) or birds (9). As expected, the structure of the mixed network was both modular (M = 0.45) and nested (NODF = 0.31); one module contained only birds and two only bats. In 20 datasets with only one disperser group, bat-fruit networks (NODF = 0.53 +/- A 0.09, C = 0.30 +/- A 0.11) were more nested and had a higher connectance than bird-fruit networks (NODF = 0.42 +/- A 0.07, C = 0.22 +/- A 0.09). Unexpectedly, robustness to extinction of animal species was higher in bird-fruit networks (R = 0.60 +/- A 0.13) than in bat-fruit networks (R = 0.54 +/- A 0.09), and differences were explained mainly by species richness. These findings suggest that a modular structure also occurs in seed dispersal networks, similar to pollination networks. The higher nestedness and connectance observed in bat-fruit networks compared with bird-fruit networks may be explained by the monophyletic evolution of frugivory in Neotropical bats, among which the diets of specialists seem to have evolved from the pool of fruits consumed by generalists. (AU)