Clonal propagation optimization of Eucalyptus globulus Labill
Genetic Variability in Corymbia citriodora (Eucalyptus citriodora)and Eucalyptus t...
![]() | |
Author(s): |
Gilvano Ebling Brondani
Total Authors: 1
|
Document type: | Doctoral Thesis |
Press: | Piracicaba. |
Institution: | Universidade de São Paulo (USP). Escola Superior de Agricultura Luiz de Queiroz (ESALA/BC) |
Defense date: | 2012-05-18 |
Examining board members: |
Marcilio de Almeida;
Leonardo Ferreira Dutra;
Antonio Natal Gonçalves;
José Leonardo de Moraes Gonçalves;
Cleber Witt Saldanha
|
Advisor: | Marcilio de Almeida |
Abstract | |
Few Eucalyptus species present adaptation for cultivation in regions subject to low temperatures and frequent frosts, and Eucalyptus benthamii genotypes may represent options for future forest plantations in different regions of Brazil, in view of its excellent silvicultural performance in these conditions. However, there is little information on obtaining clones, and considering the species recommended for planting in subtropical conditions, this lack of information is even greater, mainly when considering the endogenous and exogenous factors for the adventitious rooting. Based on these information, the present work was aimed the conducting of studies on morphophysiological aspects during the cloning of Eucalyptus benthamii through of the mini-cuttings and micropropagation techniques. Therefore, the work was divided into four basic studies. The first study (Chapter 2) was based in evaluate the morphophysiology of a clonal mini-garden regarding to Zn and B concentrations during successive shoot collections. The second study (Chapter 3) was based in evaluate the induction of adventitious rooting in mini-cuttings regarding to genotype, Zn and B concentrations, shoot collections and IBA application. The third study (Chapter 4) was based in evaluate the adventitious rooting percentage of selected genotypes regarding the IBA concentration, optimal time of permanence of rooted mini-cuttings in a greenhouse and the origin of the vascular connection. Finally, the fourth study (Chapter 5) was based in develop a method for cloning of selected genotypes through micropropagation technique for the formation of a clonal micro-garden. In overall terms, mini-stumps survival, mini-cuttings production per square meter per year and foliar content of macro and micronutrients varied significantly in relation to treatments, presenting different responses according to shoots collection of the clonal mini-garden. The content of soluble carbohydrates non-structural of leaves varied regarding the shoots collection and nutrient solution. The increasing of the Zn and B concentrations in the nutrient solution induced reduction of the total content of soluble carbohydrates non-structural of leaves. The adventitious rooting percentage was low, and the genotypes were considered difficult to propagation by mini-cuttings technique. The ministumps fertigated with nutrient solutions containing Zn and B (concentrations of 1.0 at 2.0 mg L-1) associated with the IBA application presented the greater adventitious rooting percentage. The IBA application in the concentration of 2,000 mg L-1 resulted in the greater speed of rooting and rooting percentage, and the interval of 35 to 42 days was the most suitable for the permanence of mini-cuttings rooted in a greenhouse. According to the histological analysis of rhizogenesis was verified that the adventitious root presented direct connection to the vascular cambium. The in vitro multiplication of axillary buds depends of the genetic material, culture medium and concentration of plant growth regulator and, the shoots elongation depends of the genetic material and plant growth regulator. The micropropagation protocol was efficient for the microplants production of Eucalyptus benthamii and can be used to form a clonal microgarden. (AU) |