Advanced search
Start date
Betweenand
(Reference retrieved automatically from Web of Science through information on FAPESP grant and its corresponding number as mentioned in the publication by the authors.)

Synthesis and characterization of nanostructured electrocatalysts based on nickel and tin for hydrogen peroxide electrogeneration

Full text
Author(s):
Antonin, V. S. [1] ; Assumpcao, M. H. M. T. [1] ; Silva, J. C. M. [1] ; Parreira, L. S. [1] ; Lanza, M. R. V. [2] ; Santos, M. C. [1]
Total Authors: 6
Affiliation:
[1] Univ Fed ABC, LEMN, CCNH, BR-09210170 Santo Andre, SP - Brazil
[2] Univ Sao Paulo, Inst Quim Sao Carlos, BR-13560970 Sao Carlos, SP - Brazil
Total Affiliations: 2
Document type: Journal article
Source: Electrochimica Acta; v. 109, p. 245-251, OCT 30 2013.
Web of Science Citations: 26
Abstract

This work describes both the preparation and the characterization of nanostructured materials based on tin and nickel. Composite materials of SnNi/C were prepared by the polymeric precursor method and were supported on Vulcan XC-72R, which is a high surface area carbon, for a comparative study. Three proportions on carbon were evaluated: 6%, 9% and 13%. Binary materials were prepared varying the atomic ratios of Sn and Ni at 6:1, 3:1, 1:1, 1:3 and 1:6 for each percentage composition tested. The materials were characterized by X-ray diffraction to determine the mean crystallites sizes of the important phases for the catalytic process, such as Ni3Sn, Ni3Sn2 and Ni3Sn4, and by energy dispersive spectroscopy (EDS) measurements to determine the percentage composition of the material with highest catalytic activity. The results showed that the binary material prepared with 9% metal load at a ratio of 6:1 Sn:Ni was the best material for H2O2 electrogeneration. This material showed the highest ring current, which was a consequence of the highest amount of H2O2 production having a ring current higher than that obtained for the ORR for Vulcan carbon. The best electrocatalyst transferred 2.2 electrons in the ORR with an 88% yield of H2O2, while the Vulcan carbon, which is the reference material for the 2-electron transfer reaction, produced just a 63% yield of H2O2. Thus, based on these results, 9% Sn:Ni (6:1) is a promising material to be used in H2O2 electrogeneration and in AOPs. This result is likely due to the presence of acid oxygen-containing species on carbon and to the large defect concentration in Ni3Sn4 lattice parameters, which increase oxygen diffusion and promote H2O2 production. (C) 2013 Elsevier Ltd. All rights reserved. (AU)

FAPESP's process: 11/21656-6 - Binary nanostructured materials based on metals in electrogeration of hydrogen peroxide for ciprofloxacin degradation
Grantee:Vanessa da Silva Antonin
Support Opportunities: Scholarships in Brazil - Doctorate
FAPESP's process: 10/16511-6 - Energy generation from biofuel using nanostructures
Grantee:Mauro Coelho dos Santos
Support Opportunities: Regular Research Grants
FAPESP's process: 10/04539-3 - Synthesis and characterization of nanostructured electrocatalysts for hydrogen peroxide in situ obtention and subsequent degradation of organic pollutants
Grantee:Mônica Helena Marcon Teixeira Assumpção
Support Opportunities: Scholarships in Brazil - Doctorate (Direct)