Cover plants and nitrogen fertilizer in crop rotation: composition, decomposition,...
COVER CROPS YELD RESPONSE TO LEVELS OF SILICON AND WATER STRESS
Full text | |
Author(s): |
Costa Crusciol, Carlos Alexandre
[1]
;
Ferrari Neto, Jayme
[2]
;
Soratto, Rogerio Peres
[3]
;
Martins da Costa, Claudio Hideo
[2]
Total Authors: 4
|
Affiliation: | [1] Sao Paulo State Univ, Dept Crop Sci, Coll Agr Sci FCA, BR-18610307 Botucatu, SP - Brazil
[2] UNESP, FCA, Sao Jose Do Rio Preto - Brazil
[3] UNESP, FCA, Dept Crop Sci, Sao Jose Do Rio Preto - Brazil
Total Affiliations: 3
|
Document type: | Journal article |
Source: | Revista Brasileira de Ciência do Solo; v. 37, n. 6, p. 1628-1640, NOV-DEC 2013. |
Web of Science Citations: | 1 |
Abstract | |
In a no-tillage system, cover crops must be used that combine shoot dry matter production and nutrient recycling. The aim of this study was to evaluate shoot dry matter production, decomposition rate and macronutrient and silicon release from pigeonpea and pearl millet in monoculture and intercropping systems. A randomized block design was used with a 3 x 6 factorial arrangement, with four replications. The first factor consisted of three cover crops (pigeonpea, pearl millet and intercropping of these cover crops) and the second consisted of six sampling times [0, 18, 32, 46, 74 and 91 days after desiccation (DAD)]. Pearl millet produced greater amounts of shoot dry matter and content of N, P, K, Ca, Mg, S, C and Si and had a higher decomposition rate and macronutrient and Si release than the other cover crops. The rates of decomposition and daily nutrient release from shoot dry matter were highest in the first period of evaluation (0-18 DAD). Over time, the C/N, C/P and C/S ratios increased, while C/Si and the decomposition rate decreased. Potassium was the nutrient most quickly released to the soil, especially from pearl millet residue. Silicon had the lowest release rate, with 62, 82 and 74 % of the total content in the shoot dry matter remaining in the last evaluation of pearl millet, pigeonpea and in the intercrop system, respectively. The shoot dry matter from the intercrop system had a different decomposition rate than that from the pearl millet monoculture and pigeonpea. Plants with greater shoot dry matter production and lower C/Si ratio are more effective in a no-tillage system for providing a more complete and persistent soil cover. (AU) |