Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

LIMIT CYCLES IN UNIFORM ISOCHRONOUS CENTERS OF DISCONTINUOUS DIFFERENTIAL SYSTEMS WITH FOUR ZONES

Texto completo
Autor(es):
Itikawa, Jackson ; Llibre, Jaume ; Mereu, Ana Cristina ; Oliveira, Regilene
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B; v. 22, n. 9, p. 3259-3272, NOV 2017.
Citações Web of Science: 1
Resumo

We apply the averaging theory of first order for discontinuous differential systems to study the bifurcation of limit cycles from the periodic orbits of the uniform isochronous center of the differential systems <(x) over dot> = -y + x(2)y; <(y) over dot> = x + xy and <(x) over dot> = -y + x(2) y; <(y) over dot = x + xy(2), when they are perturbed inside the class of all discontinuous quadratic and cubic polynomials differential systems with four zones separately by the axes of coordinates, respectively. Using averaging theory of first order the maximum number of limit cycles that we can obtain is twice the maximum number of limit cycles obtained in a previous work for discontinuous quadratic differential systems perturbing the same uniform isochronous quadratic center at origin perturbed with two zones separately by a straight line, and 5 more limit cycles than those achieved in a prior result for discontinuous cubic differential systems with the same uniform isochronous cubic center at the origin perturbed with two zones separately by a straight line. Comparing our results with those obtained perturbing the mentioned centers by the continuous quadratic and cubic differential systems we obtain 8 and 9 more limit cycles respectively. (AU)

Processo FAPESP: 14/00304-2 - Singularidades de aplicações diferenciáveis: teoria e aplicações
Beneficiário:Maria Aparecida Soares Ruas
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 12/18780-0 - Geometria de sistemas de controle, sistemas dinâmicos e estocásticos
Beneficiário:Marco Antônio Teixeira
Linha de fomento: Auxílio à Pesquisa - Temático
Processo FAPESP: 15/07612-7 - Centros uniformes isócronos em sistemas diferenciais polinomiais planares de grau 5
Beneficiário:Jackson Itikawa
Linha de fomento: Bolsas no Brasil - Pós-Doutorado