Busca avançada
Ano de início
Entree


HIGHER ORDER ANALYSIS ON THE EXISTENCE OF PERIODIC SOLUTIONS IN CONTINUOUS DIFFERENTIAL EQUATIONS VIA DEGREE THEORY

Texto completo
Autor(es):
Novaes, Douglas D. ; Silva, Francisco B.
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: SIAM JOURNAL ON MATHEMATICAL ANALYSIS; v. 53, n. 2, p. 15-pg., 2021-01-01.
Resumo

Recently, the higher order averaging method for studying periodic solutions of both Lipschitz differential equations and discontinuous piecewise smooth differential equations was developed in terms of the Brouwer degree theory. Between the Lipschitz and the discontinuous piecewise smooth differential equations, there is a huge class of differential equations lacking in a higher order analysis on the existence of periodic solutions, namely, the class of continuous non-Lipschitz differential equations. In this paper, based on the degree theory for operator equations, we perform a higher order analysis of continuous perturbed differential equations and derive sufficient conditions for the existence and uniform convergence of periodic solutions for such systems. We apply our results to study continuous non-Lipschitz higher order perturbations of a harmonic oscillator. (AU)

Processo FAPESP: 19/10269-3 - Teorias ergódica e qualitativa dos sistemas dinâmicos II
Beneficiário:Claudio Aguinaldo Buzzi
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 18/22689-4 - Métodos topológicos no estudo de soluções periódicas em equações diferenciais não-suaves
Beneficiário:Francisco Bruno Gomes da Silva
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 18/16430-8 - Dinâmica global das equações diferenciais não suaves
Beneficiário:Douglas Duarte Novaes
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 18/13481-0 - Geometria de sistemas de controle, sistemas dinâmicos e estocásticos
Beneficiário:Marco Antônio Teixeira
Modalidade de apoio: Auxílio à Pesquisa - Temático