Busca avançada
Ano de início
Entree


GUTIERREZ{SOTOMAYOR FLOWS ON SINGULAR SURFACES

Texto completo
Autor(es):
De Rezende, Ketty A. ; Grulha, Nivaldo G., Jr. ; Lima, Dahisy V. S. ; Zigart, Murilo A. J.
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS; v. 60, n. 1, p. 45-pg., 2022-09-01.
Resumo

In this work, we consider the collection of necessary homological conditions previously obtained via Conley index theory for a Lyapunov semi-graph to be associated to a Gutierrez-Sotomayor flow on an isolating block and address their sufficiency. These singular flows include regular R, cone C, Whitney W, double D and triple T crossing singularities. Local sufficiency of these conditions are proved in the case of Lyapunov semigraphs along with a complete characterization of the branched 1-manifolds that make up the boundary of the block. As a consequence, global sufficient conditions are determined for Lyapunov graphs labelled with R, C, W, D and T and with minimal weights to be associated to Gutierrez-Sotomayor flows on closed singular 2-manifolds. By removing the minimality condition, we prove other global realizability results by requiring that the Lyapunov graph be labelled with R, C and W singularities or that it be linear. (AU)

Processo FAPESP: 19/21181-0 - Novas fronteiras na Teoria de Singularidades
Beneficiário:Regilene Delazari dos Santos Oliveira
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 20/11326-8 - Uma abordagem algébrica-topológica para sistemas dinâmicos e topologia simplética
Beneficiário:Dahisy Valadão de Souza Lima
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 18/13481-0 - Geometria de sistemas de controle, sistemas dinâmicos e estocásticos
Beneficiário:Marco Antônio Teixeira
Modalidade de apoio: Auxílio à Pesquisa - Temático