Advanced search
Start date
Betweenand

Computational study of thermodynamic association of self­-assembled systems

Abstract

This research project describes the computational theoretical study of the thermodynamic potentials which are responsible for the spontaneous formation of self-assembled and self-organized structures in aqueous solution. Molecular dynamics simulations will be performed in order to study a prototypical micellar system. The relaxation times for systems like these are prohibitively long, so that in general a spontaneous association cannot be observed during the course of a typical molecular dynamics if realistic potentials should be employed, since the potential surface becomes too much complex to be sampled within the total duration reached by the integration of the equations of motion. This difficulty is particularly real for the calculation of entropic properties, as the entropy cannot be obtained as an ensemble average, being necessary, in principle, to know all the accessible states of the system in its phase space. Thus, our research proposal is focused on the usage of alternative techniques to study thermodynamic potentials, including the entropic ones, along the reaction coordinates describing the association/dissociation of surfactant molecules into micelles. More specifically, we shall perform molecular dynamics simulations with the umbrella sampling potential to map the potential of mean force during the removal of one molecule from the aggregates under study. The potential of mean force describes the Gibbs energy variation along the reaction coordinate, being possible to split it into its enthalpic and entropic components. It is possible as well to separate the contributions arising from the head and the apolar tail, evaluating quantitatively for the first time the effect of each part on the thermodynamics of the process. (AU)

Articles published in Agência FAPESP Newsletter about the research grant:
Articles published in other media outlets (0 total):
More itemsLess items
VEICULO: TITULO (DATA)
VEICULO: TITULO (DATA)

Scientific publications (14)
(References retrieved automatically from Web of Science and SciELO through information on FAPESP grants and their corresponding numbers as mentioned in the publications by the authors)
SUN, MAOZHONG; XU, LIGUANG; QU, AIHUA; ZHAO, PENG; HAO, TIANTIAN; MA, WEI; HAO, CHANGLONG; WEN, XIAODONG; COLOMBARI, FELIPPE M.; DE MOURA, ANDRE F.; et al. Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. NATURE CHEMISTRY, v. 10, n. 8, p. 821-830, . (12/15147-4, 13/07296-2)
BERNARDINO, KALIL; SWIERGIEL, JOLANTA; JADZYN, JAN; BOUTEILLER, LAURENT; DE MOURA, ANDRE FARIAS. Bulkiness as a design element to increase the rigidity and macrodipole of supramolecular polymers. JOURNAL OF MOLECULAR LIQUIDS, v. 286, . (17/12063-8, 13/07296-2, 12/15147-4)
XU, LIGUANG; WANG, XIUXIU; WANG, WEIWEI; SUN, MAOZHONG; CHOI, WON JIN; KIM, JI-YOUNG; HAO, CHANGLONG; LI, SI; QU, AIHUA; LU, MEIRU; et al. nantiomer-dependent immunological response to chiral nanoparticle. Nature, v. 601, n. 7893, p. 366+, . (12/15147-4, 13/07296-2)
BERNARDINO, K.; PINTO, M. E. F.; BOLZANI, V. S.; DE MOURA, A. F.; BATISTA JUNIOR, J. M.. Pinpointing disulfide connectivities in cysteine-rich proteins. CHEMICAL COMMUNICATIONS, v. 53, n. 53, p. 7337-7340, . (15/07089-2, 12/15147-4, 14/50304-9, 14/25222-9, 13/07296-2, 13/07600-3)
DE MOURA, ANDRE F.; BERNARDINO, KALIL; DALMASCHIO, CLEOCIR J.; LEITE, EDSON R.; KOTOV, NICHOLAS A.. Thermodynamic insights into the self-assembly of capped nanoparticles using molecular dynamic simulations. Physical Chemistry Chemical Physics, v. 17, n. 5, p. 3820-3831, . (12/15147-4)
LU, JUN; XUE, YAO; BERNARDINO, KALIL; ZHANG, NING-NING; GOMES, WEVERSON R.; RAMESAR, NAOMI S.; LIU, SHUHAN; HU, ZHENG; SUN, TIANMENG; DE MOURA, ANDRE FARIAS; et al. Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order. Science, v. 371, n. 6536, p. 1368+, . (12/15147-4, 17/12063-8, 13/07296-2)
JIANG, WENFENG; QU, ZHI-BEI; KUMAR, PRASHANT; VECCHIO, DREW; WANG, YUEFEI; MA, YU; BAHNG, JOONG HWAN; BERNARDINO, KALIL; GOMES, WEVERSON R.; COLOMBARI, FELIPPE M.; et al. Emergence of complexity inhierarchically organized chiral particles. Science, v. 368, n. 6491, SI, p. 642+, . (09/54035-4, 17/12063-8, 13/07296-2, 12/15147-4)
BERNARDINO, KALIL; DE MOURA, ANDRE FARIAS. Electrostatic potential and counterion partition between flat and spherical interfaces. Journal of Chemical Physics, v. 150, n. 7, . (17/12063-8, 13/07296-2, 12/15147-4)
COLOMBARI, FELIPPE M.; DE MOURA, ANDRE F.; FREITAS, LUIZ CARLOS G.. Chiral recognition of liquid phase dimers from gamma-valerolactone racemic mixture. Journal of Molecular Modeling, v. 24, n. 8, . (12/15147-4)
BERNARDINO, KALIL; DE MOURA, ANDRE F.. Aggregation Thermodynamics of Sodium Octanoate Micelles Studied by Means of Molecular Dynamics Simulations. Journal of Physical Chemistry B, v. 117, n. 24, p. 7324-7334, . (12/15147-4)
YEOM, JIHYEON; SANTOS, UALLISSON S.; CHEKINI, MAHSHID; CHA, MINJEONG; DE MOURA, ANDRE F.; KOTOV, NICHOLAS A.. Chiromagnetic nanoparticles and gels. Science, v. 359, n. 6373, p. 309+, . (12/15147-4, 13/07296-2)
MA, WEI; XU, LIGUANG; DE MOURA, ANDRE F.; WU, XIAOLING; KUANG, HUA; XU, CHUANLAI; KOTOV, NICHOLAS A.. Chiral Inorganic Nanostructures. CHEMICAL REVIEWS, v. 117, n. 12, p. 8041-8093, . (12/15147-4, 13/07296-2)
ALVARENGA, BRUNO GIORDANO; BERNARDINO, KALIL; DE MOURA, ANDRE FARIAS; SABADINI, EDVALDO. Two different pathways for assembling bis-urea in benzene and toluene. Journal of Molecular Modeling, v. 24, n. 7, . (14/04515-8, 13/07296-2, 12/15147-4)

Please report errors in scientific publications list by writing to: cdi@fapesp.br.