Advanced search
Start date
Betweenand

New approaches improved functionality of saccharolytic enzymes from fungi

Grant number: 12/51688-0
Support Opportunities:Regular Research Grants
Duration: November 01, 2013 - October 31, 2015
Field of knowledge:Biological Sciences - Genetics - Molecular Genetics and Genetics of Microorganisms
Convênio/Acordo: BBSRC, UKRI
Principal Investigator:Gustavo Henrique Goldman
Grantee:Gustavo Henrique Goldman
Principal researcher abroad: David Archer
Institution abroad: University of Nottingham, Sutton Bonington, England
Host Institution: Centro Nacional de Pesquisa em Energia e Materiais (CNPEM). Ministério da Ciência, Tecnologia e Inovação (Brasil). Campinas , SP, Brazil

Abstract

This is a bilateral UK-Brazil proposal that brings together scientists from three leading laboratories that have current research into the use of filamentous fungi to produce enzymes for the saccharification of wheat straw (UK) and sugar cane bagasse (Brazil). Their existing data underpin the proposal that will use Aspergillus niger, Trichoderma reesei and Penicillium chrysogenum to provide new knowledge on aspects of the saccharification process. Those species respond to the lignocellulosic materials in different ways, especially with the induction of glycosyl hydrolases (GHs) and accessory proteins that optimise the functionality of the GHs. The market is already reasonably well-served with cellulases from fungi (mainly Trichoderma reesei) but less so with hemi-cellulases and accessory enzymes or non-enzymic proteins that assist in the process. Our preliminary data provide new leads relating to accessory proteins and also with the signals that regulate gene expression at the appropriate time when Aspergillus and Trichoderma are exposed to wheat straw. This project will build on those data to include sugar cane bagasse as another lignocellulosic material and the project will test the following hypotheses: i) that the combined polysaccharide-degrading activity of multiple fungi from distinct genera is more effective than that of each species alone, as this more accurately reflects plant cell wall degradation in nature; ii) that the functionality of fungai enzymes used in the saccharification of lignocellulose can be enhanced by previously undiscovered proteins that do not themselves catalyse the saccharification of lignocellulose. (AU)

Articles published in Agência FAPESP Newsletter about the research grant:
More itemsLess items
Articles published in other media outlets ( ):
More itemsLess items
VEICULO: TITULO (DATA)
VEICULO: TITULO (DATA)

Please report errors in scientific publications list using this form.
X

Report errors in this page


Error details: